

NPS-MA-09-001

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited

 Prepared for: National Security Agency

 Implementing AES on the CellBE

 by

David Canright, George Dinolt, Simson Garfinkel,
Jonathan Herzog, Bruce Allen

 20 January 2009

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
20 January 2009

3. REPORT TYPE AND DATES COVERED
Technical Report 1 January – 31 December 2008

4. TITLE AND SUBTITLE:
Implementing AES on the CellBE

6. AUTHOR(S)
David Canright, George Dinolt, Simson Garfinkel, Jonathan Herzog, Bruce Allen

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
9800 Savage Road, Ste. 6538
Fort Meade, MD 20755-6538

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this report are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
When the CellBE processor was introduced, the Advanced Encryption Standard (AES) was one of the benchmarks; IBM
published throughput speeds for different modes but gave no details on the precise implementation. Our team has developed
AES independently. For ECB encryption our version is slightly faster than that of IBM; for CBC encryption our version is
significantly faster. This paper describes our development process and design tradeoffs, with emphasis on lessons learned. This
could be useful for anyone wishing to develop high-speed applications on the CellBE.

15. NUMBER OF
PAGES

38

14. SUBJECT TERMS
AES, Advanced Encryption Standard, CellBE, Cell Broadband Engine, SPU, Synergistic Processor
Unit, SIMD, Assembly Language

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

ABSTRACT

When the CellBE processor was introduced, the Advanced Encryption Standard

(AES) was one of the benchmarks; IBM published throughput speeds for different modes

but gave no details on the precise implementation. Our team has developed AES

independently. For ECB encryption our version is slightly faster than that of IBM; for

CBC encryption our version is significantly faster. This paper describes our development

process and design tradeoffs, with emphasis on lessons learned. This could be useful for

anyone wishing to develop high-speed applications on the CellBE.

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

1 Introduction

Our team has implemented authenticated encryption, using Galois Counter Mode (GCM)[6, 11], on the Cell
Broadband Engine (CellBE) processor[3]. An essential part of GCM is a block cipher, here the Advanced
Encryption Standard (AES)[8]. This paper details the process through which we developed AES on the
CellBE, and were able to match and even surpass the speed benchmarks set by IBM[1].

1.1 CellBE Processor

The Cell Broadband Engine (CellBE) processor architecture was designed jointly by Sony, Toshiba, and
IBM, as a versatile multi-processor suitable for a wide variety of applications[3]. It is best known as the
processor inside the PlaySation3, which has been very successful.

The currently available CellBE chip includes a main PowerPC Processor Element (PPE) along with
eight “Synergistic Processor Elements” (SPEs). The intent is that the PowerPC processor should run the
operating system and farm out all the computationally intensive tasks to the SPEs.

The SPEs have a different instruction set using Single Instruction Multiple Data (SIMD) parallelism,
with 128 registers, each 128 bits wide[4]. Each SPE includes a Synergistic Processor Unit (SPU, the central
processor), Local Store memory (LS, 256 KB), and a Memory Flow Controller (MFC) that handles DMA
to/from the LS. The SPU has two instruction pipelines, called even and odd, each of which handles specific
instruction types. That is, any particular instruction is either even type (e.g. xor) or odd type (e.g. load).

One application area used to demonstrate the capabilities of this new processor was cryptography. In
particular, IBM published speeds for the Advanced Encryption Standard (AES), given in terms of throughput
for a single SPE. Unfortunately, IBM did not publish its code.

1.2 Advanced Encryption Standard

The Advanced Encryption Standard (AES) was specified in 2001 by the National Institute of Standards and
Technology[8]. The purpose is to provide a standard algorithm for encryption, strong enough to keep U.S.
government documents secure for at least the next 20 years. The earlier Data Encryption Standard (DES)
had been rendered insecure by advances in computing power, and was effectively replaced by triple-DES.
Now AES will largely replace triple-DES for government use, and has become widely adopted internationally
for a variety of encryption needs, such as secure transactions via the Internet.

The AES algorithm, previously called the Rijndael algorithm[2], is a symmetric encryption algorithm,
meaning encryption and decryption are performed by essentially the same steps. It is a block cipher, where
the data is encrypted/decrypted in blocks of 128 bits. (The original Rijndael algorithm allows other block
sizes, but the Standard only permits 128-bit blocks.) Each data block is modified by several “rounds” of
processing, where each round involves four steps. Three different key sizes are allowed: 128 bits, 192 bits,
or 256 bits, and the corresponding number of rounds for each is 10 rounds, 12 rounds, and 14 rounds. From
the original key, a different “round key” is computed for each of these rounds.

There are several different modes in which AES can be used [7]. For some of these, such as Cipher Block
Chaining (CBC), the result of encrypting one block is used in encrypting the next. These are called feedback
modes, and the feedback effectively precludes processing several blocks in parallel. Other modes, such as the
“Electronic Code Book” mode and “Counter” modes, do not require feedback. These non-feedback modes
may be parallelized for greater throughput.

Here we give a brief description of the algorithm, to indicate the computations involved. The four steps in
each round of encryption, in order, are called[8] SubBytes (byte substitution), ShiftRows, MixColumns, and
AddRoundKey. Before the first round, the input block is processed by AddRoundKey (one could consider
this round number zero). Also, the last round skips the MixColumns step. Otherwise, all rounds are the
same, except each uses a different round key, and the output of one round becomes the input for the next.
(For decryption, the mathematical inverse of each step is used, in reverse order; certain manipulations allow
this to appear like the same steps as encryption with certain constants changed.)

The single nonlinear step is the SubBytes (byte substitution) step, where each byte (8 bits) of the input
is replaced by the result of applying the “S-box” function to that byte. This nonlinear function involves
finding the inverse of the 8-bit number, considered as an element of the Galois field GF(28). This is not a

1

simple calculation, and so AES implementations typically use a precomputed S-box table, where the input
byte is an index into the table to find the output. This table look-up method is fast, easy to implement, and
only requires 256 bytes.

The other three steps, (ShiftRows, MixColumns, and AddRoundKey) are linear, in the sense that the
output 128-bit block for such steps is just the linear combination (bitwise, modulo 2) of the outputs for each
separate input bit.

The ShiftRows step considers the current 128-bit state as a 4× 4 matrix of bytes (ordered as 4 columns).
This step rotates each row of bytes left by the row index (0–3); it just moves bytes around.

The MixColumns step considers the state as 4 columns of 4 bytes each, and multiplies each column by a
constant matrix: 

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




C0

C1

C2

C3

→


D0

D1

D2

D3


where byte multiplication and addition uses the Galois arithmetic of GF(28). In this field, each byte can
be considered the coefficient vector of a polynomial of (formal) degree 7: a = a7x

7 + · · · + a1x + a0 where
each coefficient ai is a bit. Addition (mod 2) is then bitwise XOR. Multiplication is polynomial multipli-
cation, modulo the irreducible polynomial x8 + x4 + x3 + x + 1. Then in the matrix above, ‘2’ (00000010)
means the polynomial x, and 2 × a = a7x

8 + · · · + a1x
2 + a0x, but modulo x8 + x4 + x3 + x + 1, giving

(a << 1) ^ (a7 * 0x11B) in C notation. And 3 × a = a + (2 × a). So MixColumns really only
requires Galois multiplication by 2.

The inverse MixColumns operation uses the inverse of the above matrix (shown below in hexadecimal):
E B D 9
9 E B D
D 9 E B
B D 9 E




D0

D1

D2

D3

→


C0

C1

C2

C3


This is a bit more complicated, since it requires multiplication by 2, by 4, and by 8 (or repeated multiplication
by 2)

These Galois multiplications may be replaced by table look-ups, and these table lookups can be combined
with those for the SubBytes (as suggested by the developers of Rijndael[2]). That is, ShiftRows can be done
first in each round (just a matter of indexing correctly), then for each byte in a column, SubBytes and
MixColumns requires one table lookup of a 4-byte column, and those 4 columns are added (XOR) to give
the output column. This approach requires 4 tables (a different table for each byte row position), each of
256 columns, for a total 4 KB of storage. All the fastest general software implementations of AES use this
approach, which has been called the T-table approach.

Lastly, the AddRoundKey step is merely adding (bitwise XOR) the Round Key to the current state.

1.3 Analysis of IBM’s Results

As one of the benchmarks for the CellBE processor, IBM published timing results for their implementations
of AES[1]. These results are given for a single SPU processor in terms of throughput rates measured in
Giga-bits per second. They give results for each of the three key sizes, both ECB and CBC modes, both
encryption and decryption. We asked IBM for the code and was told that it would not be released.

We analyzed their numbers, based on a simple model for their unknown code. We assumed their code was
structurally similar to ours, having an inner loop for each round, inside an outer loop for each block, where
the block loop may be partially unrolled to process some small number of blocks in parallel (for non-feedback
modes). Table 1 shows their rates and our loop models for them.

For each of the four modes (ECB/CBC, encrypt/decrypt) all we have to work with are three numbers.
But based on this model, the reciprocals (time per bit) should fall on a straight line. We chose the axis units
to be time in instruction clock cycles versus rounds per block. The slope of that line indicates the number
of clock cycles needed for each round of each block, inside the round loop. The total number of clock cycles
for one iteration of the round loop, processing some number b of blocks in parallel, must be an integer. So

2

Table 1: IBM’s published throughput rates (in Gigabits/sec for one SPU, from [1]) are shown, along with
our models of the loop structure of their code: we assume a small number of blocks is processed in parallel
(‘blks’) inside the round loop, and give the clocks per round per block, as well as the extra clocks per block
for the last round (usually negative). The last column shows the maximum relative error in our modeled
rates.

IBM’s published results (Gbits/sec) loop model
AES type keysize blks clocks max

128 192 256 round last err
ECB encr. 2.059 1.710 1.462 4 20.25 −4 0.03%
CBC encr. 0.795 0.664 0.570 1 51 3 0.18%
ECB decr. 1.499 1.252 1.068 2 27.5 −3 0.21%
CBC decr. 1.507 1.249 1.066 4 28 −8.75 0.05%

the fractional part of the clocks/round/block should be a multiple of 1/b. The intercept of the line indicates
the extra clocks/block needed outside the round loop, that is, for the last round (and round 0); this number
also should be a multiple of 1/b. But if our model is wrong (say, if they fully unrolled the round loop) then
the points are unlikely to lie on such a line.

The published rates give three (or a bit more) significant digits. The slopes for our least-squares fit lines
should have similar precision, but the intercepts have less precision (from cancellation). The fractional part
of the slope only has about one significant digit, but we used that to guess the number b of blocks processed
in parallel. (For CBC encryption, the feedback requires that b = 1. For ECB decryption, the fraction was
0.5, consistent with either b = 2 or b = 4.)

Our loop models agree well with the published data. For ECB encryption and CBC decryption, our
models reproduce the published throughput rates almost exactly. For ECB decryption, the three points do
not fit a line so well (the rate for 192-bit keys seems relatively high); for CBC encryption, the points make
a nice line but the slope is not exactly an integer. But even in those cases our models only give a small
difference in the least significant digits of the rates, with a relative error of a fraction of a percent. The
accuracy of these models gives strong support to our assumptions about the structure of their codes.

2 Code Development

Our goal was to implement AES on an SPE and optimize for speed. In particular, we needed the Counter
Mode (CTR) of encryption, for incorporation into the authenticated Galois Counter Mode (GCM)[6]. In
Counter Mode, a 128-bit counter is given an Initial Value (unique IV for each message for a given key).
Then for each plaintext block, the counter is incremented and encrypted using AES with the secret Key; the
result is added to the plaintext (as a stream cipher) to give the ciphertext block. Hence decryption in CTR
mode is exactly the same process, and actual AES decryption is never required. (Later, for comparison with
IBM’s results, we also implemented Electronic Code Book [ECB] encryption and Cipher Block Chaining
[CBC] encryption, a feedback mode.)

The registers in the SPU are 128 bits wide, perfect to hold the current state in the AES encryption.
The SIMD instruction set includes operations on whole registers as a single “quad-word”, or in parallel as
4 words (each 32 bits, one column of the AES state) or as 16 bytes (or even as 128 bits in parallel for such
operations as XOR). So we started by implementing the basic round steps with SIMD parallelism.

The first design consideration was whether or not to use T-tables. The IBM Cell Broadband Engine
Programming Handbook[4, 24.6.2] shows how to do 16 table lookups in parallel using the shuffle bytes
command (shufb), and specifically uses the AES SubBytes step as an example. Briefly, shufb does lookups
of bytes from tables in registers, based on the lowest 5 bits of the index byte; then each higher bit is used to
successively select (selb) the correct result. However, the T-table approach requires using bytes to look up
whole words (4-byte columns) rather than bytes. Doing this in parallel using shufb is infeasible (not enough
registers) and anyway would be much less efficient than doing the lookups sequentially from tables in Local

3

Store memory. We tried both approaches, parallel SIMD or serial T-tables, and discuss the comparisons
below. Table 2 summarizes the different versions of AES we developed, and shows the code refinement
process.

2.1 SIMD Code

For the SIMD approach, an entire block is processed in parallel parts simultaneously, including: 128 parallel
bit operations for AddRoundKey, 16 parallel byte operations for SubBytes, 4 parallel word operations for
MixColumns, and a single quadword operation for ShiftRows. This parallelism requires replacing any in-
struction branching (based on data values) with selection operations. For example, in Galois multiplication
by 2 (for MixColumns), after a left shift we add the modulo constant only if the leading bit was 1; for SIMD
we compute both with and without the modulo constant, then bytewise choose (by selb) the correct result
using a selector mask based on the leading bit of each byte.

(Note: The SPU Instruction Set[5] is limited since instructions are 32 bits wide and 7 bits are required
to specify each register involved [up to four], so relatively few operation codes are available. Consequently,
some instructions one might expect are not available. In particular, there are no instructions to rotate or
shift bytes [only halfwords, words, and quadwords], which would be handy for the Galois multiplication by
2.)

Our initial SIMD code was a straightforward implementation of the steps of a round, in a loop for the
rounds, inside a loop for each block (encrypted by Counter Mode). The SubBytes step was the most expensive
computationally, MixColumns roughly half as expensive, and the other steps just one or two instructions.
We call this version CTR0, and its speed is about one-quarter that of the IBM benchmarks. (The closest
comparison for our CTR mode is IBM’s ECB mode.)

The next version applied “instruction scheduling,” where we move instructions around (within the lim-
itations imposed by the algorithm). One goal here is to reduce or eliminate dependency stall, where an
instruction waits for the result of a previous one. The other goal of instruction scheduling is to begin two
instructions at once, one in each pipeline of the SPU; this is called dual-issue. This requires the two instruc-
tions to be of the correct types, in the correct order, aligned with the correct address parity (even, odd),
with both instructions ready to commence: no waiting for earlier results. (Address alignment may be ad-
justed by inserting no-operation commands: nop or lnop; this may also be done with the assembler .align
directive.) The ideal would be for all instructions to be dual-issued without any dependency stall, keeping
both pipelines running nonstop. But the algorithm determines which instructions are required, so typically
there are not equal numbers of instructions for each pipeline. Some operations may be achieved by different
choices of instructions, so somtimes instructions for one pipeline can effectively be replaced by instructions
for the other, to give a better balance for more dual-issues. Indeed, sometimes using more instructions to
get a result may take less time through more dual-issues.

Another related improvement comes from providing branch hints in the code. (The SPU hardware does
not automatically predict branches.) Without a branch hint, the SPU “assumes” that a branch instruction
will not branch (even an unconditional branch instruction!); if the branch is actually taken, then the instruc-
tion queue must be flushed and refilled, with a penalty of 18 or 19 clock cycles, before execution resumes. A
branch hint instruction predicts whether a later branch instruction will branch or not. (Only a single branch
hint may be in effect at any time.) If the hint is correct and given early enough, then the hinted branch
takes a single clock cycle and execution continues; if the hint was incorrect the usual branch penalty applies.
So efficiency can be enhanced by eliminating branches where feasible (e.g., using selection operations selb)
or correctly hinting branches.

Instruction scheduling our code greatly increased the amount of dual-issues and reduced dependency
stalls. And we successfully hinted the branches for both the inner round loop and the outer block loop
(except the last iteration of each loop does not branch, so suffers the penalty). These techniques nearly
doubled the speed; we call the resulting code version CTR1.

Next we considered loop unrolling. If two or more iterations of a loop can be done together, then
interleaving their instructions effectively reduces the data dependency stalls; the interleaved instructions can
take advantage of what would otherwise just be waiting time. (But note that such interleaving may have little
effect on dual-issue rates, as the balance of instructions between pipelines remains unchanged.) Furthermore,
fully unrolling a loop, where feasible, can eliminate branch instructions and counter increments.

4

For AES, each round begins with the result of the previous round, so successive iterations of the round
loop cannot be interleaved this way. However, for non-feedback encryption modes, such as CTR or ECB,
the encryption of each block is independent of the other blocks. So the block loop may be partially unrolled
to interleave instructions for two or more blocks. This makes the code more complicated and also requires
using more registers (several for each block). At first we unrolled to do two blocks at once, which eliminated
much of the dependency stall; this code is called CTR2. We later unrolled two more blocks, to process four
blocks at a time, eliminated all the remaining dependency stall; this we call CTR4a. But this was still not
as fast as IBM’s benchmark ECB, though it was getting close.

The next improvement came from rethinking the MixColumns step. (Two versions were developed, one for
feedback modes and one for the four-block unrolled loop, because they had different optimizations available.)
One xor was saved by reorganizing the algebraic steps, particularly by adding rows 0 and 1 together before
doing the Galois multiply by 2. And the scheduling was improved by combining AddRoundKey with the
additions in MixColumns. Also, the dual-issue rate was improved by replacing some even pipeline commands
by different odd pipeline ones. More specifically, some roti (rotate) instructions were replaced by shufb
instructions, a selb (select) became two shufb instructions, and for one of the four blocks, a comparison
instruction was replaced by four odd pipeline instructions.

Further instruction scheduling was applied in the four-block version, to take advantage of more dual-
issues. This included preparing for the next iteration of blocks while finishing the last round of the current
blocks, and interleaving some instructions from MixColumns for some blocks with the SubBytes for other
blocks.

Finally, another improvement was dynamic branch hinting. By using a table of branch hint addresses,
we could correctly hint even the last iteration of the round loop. This alone gave a further 3% speedup (in
the one-block version).

At this point, we have a highly optimized version of AES in Counter mode, which encrypts four blocks
at a time, called CTR4. Within the block and round loops (and mostly elsewhere): every odd-pipeline
instruction is dual-issued (there are more even-pipeline instructions); there are no dependency stalls; all
branches are correctly hinted (except the final iteration of the block loop).

The only further improvement we could see would be to fully unroll the round loop. This would not
help the instruction scheduling any, since already there is no dependency stall and no more possibilities for
dual issue. Also the branch itself is dual issued and properly hinted so takes no time. The one apparent
improvement comes from eliminating the single (even-pipeline) instruction that increments the round counter
itself. (The instructions that load and issue the branch hints for the round loop could also be eliminated,
but since these are odd-pipeline instructions dual issued with essential even-pipeline commands, eliminating
them would save no time.) Since we process four blocks at a time, this only helps by 1

4 cycle/block/round.
The downsides would be requiring three different versions of the encryption code, one for each key length,
and each of these unrolled codes would be much longer (by roughly 4 to 6 times). So we have chosen not to
unroll the round loop.

2.2 Other Encryption Modes

Besides Counter mode, we also developed code versions for other modes of encryption, primarily for direct
comparison with IBM’s results.

Electronic Codebook (ECB) mode is very similar to Counter mode, except the AES rounds are applied
to the plaintext block, rather than to a counter. This saves two operations per block, relative to Counter
mode: no counter block is incremented nor added to the plaintext. So our ECB code is slightly faster than
our corresponding CTR code. And since each block is encrypted independently, we can partially unroll the
block loop as in CTR mode. Hence our ECB encryption code is very similar to our CTR code.

We did not develop code for ECB decryption, nor any other mode requiring the AES decryption function,
also called the inverse cipher. The inverse cipher is more complicated due to the larger factors in the inverse
MixColumns matrix. (IBM’s results show a decrease in throughput for ECB decryption.)

Cipher Block Chaining (CBC) mode begins encryption of a plaintext block by adding the ciphertext from
the previous block (except the first block uses an Initial Value instead of the ciphertext block). This feedback
increases security, but prevents any unrolling of the block loop. Since only a single block is processed at a
time, opportunities for instruction scheduling are greatly limited, compared to the non-feedback modes. So

5

Table 2: Here we compare several different versions we have developed.

throughput results (Gbit/sec) loop model
code keysize blks clocks

128 192 256 round last

our SIMD CTR results:
CTR0 0.496 0.411 0.351 1 85 −26
CTR1 0.867 0.731 0.631 1 44 31
CTR2 1.431 1.196 1.028 2 28 5.5
CTR4a 1.872 1.555 1.330 4 22.25 −4.25
CTR4 2.071 1.722 1.474 4 20 −2.75

our T-table CTR results:
Tab1 0.827 0.692 0.596 1 48 14
Tab2 1.084 0.914 0.790 1 35 27

our CBC results:
CBC1 0.898 0.752 0.647 1 44 15
CBC2 1.191 0.989 0.846 1 35 −7

our ECB results:
ECB1 1.058 0.884 0.759 1 38 6
ECB4a 1.976 1.639 1.400 4 21.25 −5.75
ECB4 2.092 1.737 1.484 4 20 −4.75

the time per block is increased due to unavoidable data dependence waits and fewer dual issues; our resulting
CBC code is roughly half as fast as the CTR version. (CBC decryption can process blocks in parallel, using
the inverse AES cipher; we did not develop code for this.)

Besides ECB, CBC, and CTR modes, NIST has approved two other modes for security[7]. Cipher
Feedback (CFB) mode and Output Feedback (OFB) mode both need the output of encrypting the previous
block before they can begin encrypting the next block, so cannot encrypt blocks in parallel. Both also add
(xor) the result of an AES encryption to the plaintext block to get the ciphertext. Hence, for decryption,
both use only the forward AES algorithm, not the inverse cipher. CFB can decrypt blocks in parallel, but
not OFB. (We did not develop codes for these modes, though they would be relatively simple modifications
to versions we did develop.)

NIST has also approved three authentication modes based on block encryption: Cipher-based Mes-
sage Authentication Code (CMAC)[9] essentially uses CBC encryption to generate an authentication hash;
Counter with Cipher Block Chaining-Message Authentication Code (CCM)[10] combines CTR mode for
encryption with CBC mode for authentication; Galois/Counter Mode (GCM)[11] uses CTR mode for en-
cryption with a separate hash function not based on encryption. (Our main goal was to produce fast GCM
encryption/decryption, which is why our main interest in AES is the CTR mode.) None of these authenti-
cation modes uses the inverse cipher.

2.3 T-table Code

Since fast software implementations of AES typically use the “T-table” approach (where table look-ups handle
the combined SubBytes and MixColumns steps), we wanted to try this on the CellBE. So we developed a
T-table code to investigate how the algorithmic parallelism of the T-table method compares with the SIMD
parallelism available on the SPU.

In the usual software implementation, for each column (4 bytes = 1 word) of output, each of the four
bytes of input indexes a different table of 256 words, and those four words are added (xor) together. This

6

requires 4 tables× 256 entries× 4 Bytes = 4KB of storage for tables. On the SPU, speed dictates that each
lookup returns a quadword (16 bytes = 1 register = 1 block), since otherwise several more instructions would
be required to get the desired word into the desired position in a register. So we set up 16 tables (four for
each column of output, with zeros in the other column positions), and each of the 16 input bytes indexes
one of those tables, with the 16 output quadwords getting summed for the result. Altogether this requires
16 tables× 256 entries× 16 Bytes = 64KB, or 1

4 of the total Local Store memory of an SPE.
The lookups are done for each byte in serial fashion, which might normally suggest a loop over the 16

bytes. But we fully unrolled this (potential) byte loop, which allows us to replace the ShiftRows step by
choosing the shifted index in each case. For each of the 16 table lookups in a round, the corresponding byte
first must be moved to the correct position in the “preferred slot” of a register, with all higher bits of that
word zeroed out. Different approaches to do this were combined to balance the two pipelines.

By the way, the exact same approach is used in the Galois Hash operation of GCM. There, the operation
performs multiplication of a 128-bit data block with a known 128-bit constant H in the Galois field GF(2128).
Sixteen tables, each one block wide by 256 long, are precomputed from H to give the contribution to the
product from each byte of the data block. Then this Galois multiplication consists of using each input byte
to index a different table and adding up (xor) all 16 of the 128-bit contributions (by the distributive property
of multiplication).

Our T-table implementation (of CTR mode) has no unrolling of the block loop (nor the round loop).
The round loop requires 35 clocks per round; the last round takes longer. (Since the last round lacks the
MixColumns step, the T-table method requires additional instructions to mask the table outputs.) Although
we did not develop a multi-block version using T-tables, we can estimate how much improvement is possible:
it appears the best we might achieve by partially unrolling the block loop would be over 27 clocks per round.

One other improvement for the T-table approach would be the rather obscure trick called “counter-mode
caching.” For 15 out of 16 blocks, only the least significant byte of the CTR changes from the previous value.
Then for the first round, only that byte needs a table look-up; the rest can be cached from the last block’s
first round. (This trick doesn’t help the SIMD approach, since all bytes are processed in parallel.) We have
not implemented this, but estimate that counter-mode caching would improve the throughput rates by no
more than 6% for the one-block version. (This caching trick would not be feasible for multi-block versions.
But for GCM, only the four least significant bytes of the counter ever change, so the results of the first round
for the remaining 12 bytes could be cached.)

So how does the T-table method compare to the SIMD approach? In terms of memory, T-tables require
an extra 64 KB. The speed comparison depends on the mode. For non-feedback modes of encryption,
such as CTR mode, our 4-block SIMD version is much faster than the T-table approach (about 45% faster
than our estimate for a multi-block table version). Hence “counter-mode caching” is moot. For feedback
modes of encryption, such as CBC mode, our 1-block SIMD version is slightly faster (about 8%) than the
T-table approach. (Both approaches take 35 clocks/round in the round loop; the difference is in the last
round. Conceivably one could graft T-table rounds to a SIMD last round to get a version just as fast as our
pure-SIMD CBC code.)

But for AES decryption, the SIMD approach gets more complicated due to the larger factors in the
inverse MixColumns, while the T-table approach remains essentially unchanged, except for using a different
64 KB set of tables. We did not implement decryption, but judging from IBM’s results, SIMD decryption
for non-feedback modes should take about 27.5 clocks/round, comparable to the T-table approach. But
for decryption modes requiring feedback, we expect the T-table approach to be significantly faster than
SIMD. However, none of the five security or three authentication modes approved by NIST use the inverse
AES cipher with feedback in decrypting, so this potential advantage of T-tables might only apply to some
non-standard mode. Therefore, T-tables offer no significant speed advantages for any standard modes on
the SPU, yet carry the significant cost of using 1

4 of the Local Store memory (or 1
2 if both AES encryption

and decryption are needed).

3 Results and Conclusions

We have successfully developed fast versions of AES for the Synergistic Processor Elements of the CellBE
processor. Our main interest was CTR mode, as part of Galois Counter Mode authenticated encryption,

7

Table 3: We compare our measured throughput rates (for one SPU) with those published by IBM. Also
shown (using our models for IBM’s results): number of blocks processed in parallel, clocks per round per
block, and extra clocks per block for the last round.

throughput results (Gbit/sec) loop model
who keysize blks clocks

128 192 256 round last

ECB encr (no feedback):
ours 2.092 1.737 1.484 4 20 −4.75
IBM’s 2.059 1.710 1.462 4 20.25 −4

CBC encr (feedback mode):
ours 1.191 0.989 0.846 1 35 −7
IBM’s 0.795 0.664 0.570 1 51 3

but we also developed versions for ECB and CBC encryption modes. Table 3 compares our results with the
IBM benchmarks, for the two modes implemented by both teams. We measured the throughput rates for
our code using the system clock to find the time taken for our subroutine to encrypt a buffer full of blocks.

Our implementation of ECB encryption is slightly faster than IBM’s (1.6% for 128-bit keys). Compared
to our loop model of their code, we were able to save one more instruction per four blocks in the round
loop (by replacing an even pipeline instruction by four odd pipeline instructions as mentioned above). More
importantly, we are willing to make our code public, which IBM is not.

And for CBC encryption, our implementation is 50% faster (for 128-bit keys), a significant improvement
over the IBM benchmark. (We remain curious why there is such a difference for CBC mode.)

In developing our AES code, we compared the T-table approach (found in all the fastest standard C
implementations of AES), which uses serial table lookups, with the SIMD approach of processing a whole
block in parallel. For non-feedback encryption modes SIMD is much faster (approximately 45%). For
feedback modes of encryption and non-feedback decryption modes, T-tables are basically the same speed1 as
SIMD but use up at least 1

4 of the Local Store memory. There are no standard modes where AES decryption
must be done using feedback, but if there were, T-tables would likely be faster than SIMD for those. So for
all standard modes, there is no reason to use T-tables on an SPU.

The method we used to develop fast code follows the suggestions in the IBM documentation for pro-
gramming the SPU[4]. While the IBM programming environment provides great support for writing in a
high level language such as C, including ways to include particular assembly language instructions, we chose
to develop the most time-intensive portions of GCM (including AES) directly in assembly language. The
first step was to arrange the algorithm to take full advantage of the SIMD architecture of the SPU, includ-
ing replacing data-dependent branching by selection operations. Then instructions were scheduled (moved
around), with the help of partial loop unrolling where feasible, to reduce the number of cycles where one or
both pipelines was idly waiting for a previous result. This included moving instructions from one pipeline
to equivalent instructions on the other in order to balance the load, to get both pipelines done sooner. And
correctly hinting the remaining branches as often as possible eliminated instruction cache waits.

Our independent development of AES on the CellBE makes fast encryption code publicly available, and
adds more confirmation of the powerful capabilities of the CellBE architecture.

1based partly on IBM’s results, assuming their decryption was SIMD

8

References

[1] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine architecture and its first
implementation—a performance view. IBM Journal of Reseach and Development, 51(5):559–572,
September 2007. http://researchweb.watson.ibm.com/journal/rd/515/chen.pdf.

[2] Joan Daemen and Vincent Rijmen. The Design of Rijndael, AES - The Advanced Encryption Standard.
Springer-Verlag, 2002.

[3] IBM. Introduction to the cell Broadband Engine. http://www-01.ibm.com/chips/techlib/techlib.
nsf/techdocs/D21E662845B95D4F872570AB0055404D, 31 October 2005.

[4] IBM. Cell Broadband Engine programming handbook, version 1.2. http://www-01.ibm.com/chips/
techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F, 24 April 2007.

[5] IBM. Spu instruction set architecture, version 1.2. http://www-01.ibm.com/chips/techlib/techlib.
nsf/techdocs/76CA6C7304210F3987257060006F2C44, 27 January 2007.

[6] David A. McGrew and John Viega. The Galois/counter mode of operation (GCM). http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf, May 2005.

[7] NIST. Recommendation for block cipher modes of operation, December 2001. SP 800-38A.

[8] NIST. Specification for the ADVANCED ENCRYPTION STANDARD (AES), November 2001. FIPS
PUB 197.

[9] NIST. Recommendation for block cipher modes of operation: The CCM mode for authentication and
confidentiality, May 2004. SP 800-38C.

[10] NIST. Recommendation for block cipher modes of operation: The CMAC mode for authentication,
May 2005. SP 800-38B.

[11] NIST. Recommendation for block cipher modes of operation: Galois/counter mode (GCM) and GMAC,
November 2007. SP 800-38D.

9

A Optimization of MixColumns

Here we detail the steps by which we optimized the MixColumns step, including the relevant assembly
language source code (taken out of context). This section shows most of the interesting optimizations of the
round loop, since our implementation of SubBytes basically follows the SIMD table lookup given in the IBM
Programming Handbook[4].

Considering the 128-bit state block (register) as a 4 × 4 matrix of bytes, then MixColumns performs
the same operation on each of the 4 columns (words in the register). For an input column (r0, r1, r2, r3),
the top output byte (#0) is given by 2 × r0 + 3 × r1 + r2 + r3, and the other output bytes are the rotated
equivalent (so output #1 = 2× r1 + 3× r2 + . . ., etc.) The multiplication is in the Galois field of bytes, so
to multiply by 2 one shifts left 1 bit then reduces modulo the field polynomial, represented by the nine-bit
constant 0x11B. (If the most significant bit was initially 0, the result is the usual multiply by 2.) And as
usual, 3× x = 2× x + x, except each addition is bitwise xor.

The initial assembly version of this (in CTR0) was a direct SIMD implementation: clear msb of bytes
then shift quadword left by 1 bit (this could be done in one step if there were a “shift byte” instruction);
maybe add 0x1B, using byte selector based on msb (bit7), to get 2×x; add original byte to get 3×x; rotate
columns and add rows. (Note: to aid readibility, our assembly source uses named registers, beginning $R;
pipeline 0 instructions are flush left while pipeline 1 instructions are indented; dual-issued instruction pairs
are indicated by braces.)

SIMD version #0 of Mix Columns
andbi $Rtimes2, $Rstate, 0x7F # ain’t no "shift byte"; clear msb

shlqbii $Rtimes2, $Rtimes2, 1 # shift block 1 bit
xorbi $Rtimes2m, $Rtimes2, 0x1B # mod field polynomial
clgtbi $Rbit7, $Rstate, 0x7F # if msb = 1
selb $Rtimes2, $Rtimes2, $Rtimes2m, $Rbit7 # now have byte x 2 in GF
xor $Rtimes3, $Rtimes2, $Rstate # also byte x 3
roti $Rrow1, $Rtimes3, 8 # rotate columns and add:
xor $Rcols, $Rtimes2, $Rrow1 # 2 x r0 + 3 x r1
roti $Rrow2, $Rstate, 16
xor $Rcols, $Rcols, $Rrow2 # + 1 x r2
roti $Rrow3, $Rstate, 24
xor $Rstate, $Rcols, $Rrow3 # + 1 x r3, and done

The next version (in CTR1) was essentially the same steps, but in a different order (instruction schedul-
ing), to get some dual issues and reduce data dependency stall:

SIMD version #1 of Mix Columns
andbi $Rtimes2, $Rstate, 0x7F # no "shift byte"; clear msb
clgtbi $Rbit7, $Rstate, 0x7F # if msb = 1

dual issue:{ roti $Rrow2, $Rstate, 16
shlqbii $Rtimes2, $Rtimes2, 1 # shift block 1 bit

dual issue:{ roti $Rrow3, $Rstate, 24
lqx $Rroundkey, $Rroundkeys, $Rround # get round key

xorbi $Rtimes2m, $Rtimes2, 0x1B # mod field polynomial
selb $Rtimes2, $Rtimes2, $Rtimes2m, $Rbit7 # now have byte x 2 in GF
xor $Rtimes3, $Rtimes2, $Rstate # also byte x 3
roti $Rrow1, $Rtimes3, 8 # rotate columns and add:
xor $Rcols, $Rtimes2, $Rrow2 # 2 x r0 + 1 x r2
xor $Rcols, $Rcols, $Rrow3 # + 1 x r3
xor $Rstate, $Rcols, $Rrow1 # + 3 x r1, and done

Partially unrolling the block loop allowed reduction (CTR2) or elimination (CTR4a) of the remaining
data dependency stall, by interleaving instructions for 2 or 4 blocks to fill in the “wait” cycles. At this point,

10

we also reconsidered the overall approach to MixColumns. One change was adding rows 0 and 1 first, before
the multiply by 2: so 2 × r0 + 3 × r1 + r2 + r3 became 2 × (r0 + r1) + r1 + (r2 + r3); this eliminated one
xor and one roti. Another improvement came from integrating ShiftRows and AddRoundKey in as well, for
better instruction scheduling. The third change involved moving instructions from pipeline 0 (even), where
most of them were, to pipeline 1 (odd), to allow more dual issues: the remaining two roti instructions were
replaced by two shufb ones. Here some dual issues come from interleaving with other blocks, but we show
only those in one block.

SIMD version #2 & #4a of Shift Rows and Mix Columns and Add Round Key
shufb $Rrow1, $Rstate, $Rstate, $Rshiftrow1 # move bytes: row 1{ xor $Rrows, $Rrow1, $Rroundkey # 1 + RK
shufb $Rrow0, $Rstate, $Rstate, $Rshiftrows # move bytes around: row 0

xor $Rrow01, $Rrow0, $Rrow1 # (0+1){ clgtbi $Rbit7, $Rrow01, 0x7F # mult 2*(0+1) in GF
shufb $Rrow23, $Rrow01, $Rrow01, $Rrotrow2 # 2+3{ xor $Rrows, $Rrows, $Rrow23 # 1+2+3 + RK
shlqbii $Rtimes2, $Rrow01, 1 # shift 1

andbi $Rtimes2, $Rtimes2, 0xFE # clear lsb (was msb)
xorbi $Rtimes2m, $Rtimes2, 0x1B # mod field polynomial
selb $Rtimes2, $Rtimes2, $Rtimes2m, $Rbit7 # now have 2*(0+1) in GF
xor $Rstate, $Rrows, $Rtimes2 # 2*(0+1) + (1+2+3) + RK

By this point (CTR4a), all the pipeline 1 instructions were dual-issued (within the loops), though there
were many pipeline 0 instructions left over. But judging by IBM’s times, there was still room for improvement,
by one more clock cycle per round per block. We couldn’t find any way to eliminate more instructions. So
the only option was to move more instructions from pipeline 0 to pipeline 1. Fortunately, we found ways to
do this, using some of the quirky pipeline 1 instructions. The shuffle bytes shufb instruction does special
things if the msb of the input byte is 1 (otherwise it picks a byte based on the 5 lowest bits); in particular,
repeated application could give the sequence 0xFF → 0x80 → 0x00. In this way, we replaced one selection
selb by two shufbs, though it required reversing the comparison cgtbi: if the msb was 0, the comparison
gave 0xFF, but if the msb was 1 then 0x00; after two shufbs using a register full of the field polynomial
byte, then the result byte was 0x00 or 0x1B respectively, the correct value to add for the Galois multiply.
This saves one cycle per round per block, by eliminating a pipeline 0 command, basically matching IBM’s
timing. In our final version (CTR4), this approach applies for 3 of the 4 blocks each round:

SIMD version #4 (3 of 4 blocks) of Shift Rows, Mix Columns, Add Round Key
shufb $Rrow1, $Rstate, $Rstate, $Rshiftrow1 # move bytes: row 1{ xor $Rrows, $Rrow1, $Rroundkey # 1 + RK
shufb $Rrow0, $Rstate, $Rstate, $Rshiftrows # move bytes around: row 0

xor $Rrow01, $Rrow0, $Rrow1 # (0+1){ cgtbi $Rbit7, $Rrow01, -1 # msb=0 -> FF; =1 -> 00
shufb $Rrow23, $Rrow01, $Rrow01, $Rrotrow2 # 2+3{ xor $Rrows, $Rrows, $Rrow23 # 1+2+3 + RK
shlqbii $Rtimes2, $Rrow01, 1 # shift 1

Note: in $Rmod each byte = 0x1B{ andbi $Rtimes2, $Rtimes2, 0xFE # clear lsb
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # FF -> 80, 00 -> 1B{ xor $Rrows, $Rrows, $Rtimes2 # 2*(0+1) + (1+2+3) + RK
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # 80 -> 00, 1B -> 1B

xor $Rstate, $Rrows, $Rbit7 # mod GF poly

And for our final magic trick, we were able to move one more instruction from pipeline 0, but only for one of
the four blocks each round. The comparison instruction clgtbi, which generates a byte of all 0s or 1s based
on the msb, can be replaced using “gather bits from bytes” gbb (gets all 16 lsb’s) followed by “form select
mask for bytes” fsmb (repeats each of those 16 bits 8 times). Since this uses the lsb rather than the msb,
it must be done after the shift (which itself must become a quadword rotate instead), so requires another

11

quadword rotate back by a byte to put the mask back with its byte of origin. Also, since this does not reverse
the sense of the comparison (as needed for the previous trick), one additional shufb is required to get the
selection right. In short, one pipeline 0 instruction clgtbi of duration 2 cycles gets removed, and later four
pipeline 1 instructions, each of duration 4 cycles, get inserted. This is why it was only possible for one out
of four blocks: lots of other instructions were needed to fill in all that time; but with massive rescheduling
of instructions, it worked out. This trick saved one cycle per round for every 4 blocks (and beat IBM). So
for one block in CTR4, it looks like this (note that all pipeline 1 instructions get dual issued by interleaving
with other blocks; again only dual issues within the block are shown):

SIMD version #4 (1 of 4 blocks) of Shift Rows, Mix Columns, Add Round Key
shufb $Rrow1, $Rstate, $Rstate, $Rshiftrow1 # move bytes: row 1
shufb $Rrow0, $Rstate, $Rstate, $Rshiftrows # move bytes around: row 0

xor $Rrow01, $Rrow0, $Rrow1 # (0+1)
rotqbii $Rtimes2, $Rrow01, 1 # mul by 2
gbb $Rbit7, $Rtimes2 # get lsb (was msb)
fsmb $Rbit7, $Rbit7 # byte selector
rotqbyi $Rbit7, $Rbit7, -1 # rot back to source byte{ xor $Rrows, $Rrow1, $Rroundkey # 1 + RK
shufb $Rrow23, $Rrow01, $Rrow01, $Rrotrow2 # 2+3

Note: in $Rmod each byte = 0x1B; in $Rzero each byte = 0x00{ xor $Rrows, $Rrows, $Rrow23 # 1+2+3 + RK
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # 00 -> 1B, FF -> 80{ andbi $Rtimes2, $Rtimes2, 0xFE # clear lsb
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # 1B -> 1B, 80 -> 00{ xor $Rrows, $Rrows, $Rtimes2 # 2*(0+1) + (1+2+3) + RK
shufb $Rbit7, $Rmod, $Rzero, $Rbit7 # 1B -> 00, 00 -> 1B

xor $Rstate, $Rrows, $Rbit7 # mod GF poly

12

B Initial AES CTR Assembly Code

This version was our first attempt to use the SPU Assembly language to implement AES encryption: CTR0.
The SIMD instructions process all parts of a block in parallel. The SubBytes table lookup is based on that
given in the IBM Programming Handbook. The rest is implemented in a direct manner, in a way that seems
logical from a programmer’s point of view, so this is fairly readable. But the instructions are not in the most
efficient order from the machine’s viewpoint: there is a lot of data dependency stall and no dual issues.

The format is as in the optimization examples above: named registers begin $R and statement labels
begin L; pipeline 0 instructions are flush left while pipeline 1 instructions are indented.

AES function, CTR mode, basic version (0) 2008 Mar 24 Mon 20:42:10
5 input parameters: (NO error checking)
pointer to data buffer
pointer to Round Key buffer
number of data blocks (must be compatible with length of data buffer)
number of rounds (must be compatible with length of Round Key buffer)
counter value for first data block
1 output parameter:
counter value for next data block

.file "aes_ctr.s"

.section mydata,"a",@progbits

.align 4
Sbox:

.octa 0x637C777BF26B6FC53001672BFED7AB76

.octa 0xCA82C97DFA5947F0ADD4A2AF9CA472C0

.octa 0xB7FD9326363FF7CC34A5E5F171D83115

.octa 0x04C723C31896059A071280E2EB27B275

.octa 0x09832C1A1B6E5AA0523BD6B329E32F84

.octa 0x53D100ED20FCB15B6ACBBE394A4C58CF

.octa 0xD0EFAAFB434D338545F9027F503C9FA8

.octa 0x51A3408F929D38F5BCB6DA2110FFF3D2

.octa 0xCD0C13EC5F974417C4A77E3D645D1973

.octa 0x60814FDC222A908846EEB814DE5E0BDB

.octa 0xE0323A0A4906245CC2D3AC629195E479

.octa 0xE7C8376D8DD54EA96C56F4EA657AAE08

.octa 0xBA78252E1CA6B4C6E8DD741F4BBD8B8A

.octa 0x703EB5664803F60E613557B986C11D9E

.octa 0xE1F8981169D98E949B1E87E9CE5528DF

.octa 0x8CA1890DBFE6426841992D0FB054BB16
ShiftRows:

.octa 0x00050A0F04090E03080D02070C01060B
Incr:

.octa 0x00000000000000000000000000000001
.text

.align 3

.global aes_ctr

.type aes_ctr, @function

##REGISTER DEFINITIONS##
.set Rin_dat, 3 # 1st param = ptr to block
.set Rin_key, 4 # 2nd param = ptr to keys
.set Rin_nb, 5 # 3rd param = number of blocks
.set Rin_nr, 6 # 4th param = number of rounds
.set Rin_ctr, 7 # 5th param = counter initial value

13

.set Rout_ctr, 3 # output param = counter next value

.set RTOP, 79 # last volatile reg

.set Rnrounds, RTOP - 20 # # of Rounds

.set Rincr, RTOP - 19 # increment for CTR

.set Rdat, RTOP - 18 # 1st param = ptr to block

.set Rroundkeys, RTOP - 17 # Keys Ptr (const)

.set Rshiftrows, RTOP - 16 # ShiftRows (const)

.set Rsbox0, RTOP - 15 # S-box Table (const)

.set Rsbox1, RTOP - 14 # S-box Table (const)

.set Rsbox2, RTOP - 13 # S-box Table (const)

.set Rsbox3, RTOP - 12 # S-box Table (const)

.set Rsbox4, RTOP - 11 # S-box Table (const)

.set Rsbox5, RTOP - 10 # S-box Table (const)

.set Rsbox6, RTOP - 9 # S-box Table (const)

.set Rsbox7, RTOP - 8 # S-box Table (const)

.set Rsbox8, RTOP - 7 # S-box Table (const)

.set Rsbox9, RTOP - 6 # S-box Table (const)

.set RsboxA, RTOP - 5 # S-box Table (const)

.set RsboxB, RTOP - 4 # S-box Table (const)

.set RsboxC, RTOP - 3 # S-box Table (const)

.set RsboxD, RTOP - 2 # S-box Table (const)

.set RsboxE, RTOP - 1 # S-box Table (const)

.set RsboxF, RTOP - 0 # S-box Table (const)

.set Rround, 2 # Round counter

.set Rctr, 3 # CTR (3 = reg for return)

.set Rsbox01, 4 #

.set Rsbox23, 5 #

.set Rsbox45, 6 #

.set Rsbox67, 7 #

.set Rsbox89, 8 #

.set RsboxAB, 9 #

.set RsboxCD, 10 #

.set RsboxEF, 11 #

.set Rstate, 12 # block State

.set Ridx, 13 #

.set Rblock, 14 # block counter

.set Rbit5, 15 #

.set Rbit6, 16 #

.set Rbit7, 17 #

.set NR, 15 # number of reg per block (unused)

.set Rsbox03, Rsbox01 #

.set Rsbox47, Rsbox23 #

.set Rsbox8B, Rsbox45 #

.set RsboxCF, Rsbox67 #

.set Rsbox07, Rsbox03 #

.set Rsbox8F, Rsbox47 #

.set Rtimes2, Rsbox23 #

.set Rtimes2m, Rsbox45 #

.set Rtimes3, Rsbox67 #

.set Rcols, Rsbox89 #

.set Rrow1, RsboxAB #

.set Rrow2, RsboxCD #

.set Rrow3, RsboxEF #

14

.set Rroundkey, Rbit5 #

.set Rdatablk, Rbit6 #

aes_ctr:
load tables into registers

lqr $Rincr, Incr
lqr $Rshiftrows, ShiftRows
lqr $Rsbox0, Sbox+0x00
lqr $Rsbox1, Sbox+0x10
lqr $Rsbox2, Sbox+0x20
lqr $Rsbox3, Sbox+0x30
lqr $Rsbox4, Sbox+0x40
lqr $Rsbox5, Sbox+0x50
lqr $Rsbox6, Sbox+0x60
lqr $Rsbox7, Sbox+0x70
lqr $Rsbox8, Sbox+0x80
lqr $Rsbox9, Sbox+0x90
lqr $RsboxA, Sbox+0xA0
lqr $RsboxB, Sbox+0xB0
lqr $RsboxC, Sbox+0xC0
lqr $RsboxD, Sbox+0xD0
lqr $RsboxE, Sbox+0xE0
lqr $RsboxF, Sbox+0xF0

setup so round reg counts up to zero from neg.
then adjust pointer to roundkeys so sum points to round key
shli $Rnrounds, $Rin_nr, 4 # #rounds*16
sfi $Rnrounds, $Rnrounds, 0x10 # neg. of (#rounds-1)*16 to addr QW
sf $Rroundkeys, $Rnrounds, $Rin_key # offset: roundkeys+round -> round key

use similar count-up with block counter
shli $Rblock, $Rin_nb, 4 # #blocks*16
sfi $Rblock, $Rblock, 0 # neg. of (#blocks)*16 to addr QW
sf $Rdat, $Rblock, $Rin_dat # offset: dataptr+block -> data
ori $Rctr, $Rin_ctr, 0 # move initial value to CTR

Lblockloop:
ori $Rstate, $Rctr, 0 # move CTR to State
a $Rctr, $Rctr, $Rincr # increment CTR
ori $Rround, $Rnrounds, 0 # initialize round counter

ROUND 0:
SIMD version of Add Round Key

lqx $Rroundkey, $Rroundkeys, $Rround # get round key
xor $Rstate, $Rstate, $Rroundkey # add it to state

Lroundloop:
ai $Rround, $Rround, 0x10 # next round (*16)

SIMD version of S-box
presumes S-box table pre-loaded into sbox1 - sboxF
andbi $Ridx, $Rstate, 0x1F # lower 5 bits for partial lookup

shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111

15

andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)
ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11
andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1
clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup

SIMD version of shift rows
presumes shiftrows reg pre-loaded to:
0x 00 05 0A 0F 04 09 0E 03 08 0D 02 07 0C 01 06 0B

shufb $Rstate, $Rstate, $Rstate, $Rshiftrows # move bytes around
SIMD version of Mix Columns
andbi $Rtimes2, $Rstate, 0x7F # ain’t no "shift byte"; clear msb

shlqbii $Rtimes2, $Rtimes2, 1 # shift block 1 bit
xorbi $Rtimes2m, $Rtimes2, 0x1B # mod field polynomial
clgtbi $Rbit7, $Rstate, 0x7F # if msb = 1
selb $Rtimes2, $Rtimes2, $Rtimes2m, $Rbit7 # now have byte x 2 in GF
xor $Rtimes3, $Rtimes2, $Rstate # also byte x 3
roti $Rrow1, $Rtimes3, 8 # rotate columns and add:
xor $Rcols, $Rtimes2, $Rrow1 # 2 x r0 + 3 x r1
roti $Rrow2, $Rstate, 16
xor $Rcols, $Rcols, $Rrow2 # + 1 x r2
roti $Rrow3, $Rstate, 24
xor $Rstate, $Rcols, $Rrow3 # + 1 x r3, and done

SIMD version of Add Round Key
assumes round reg has (round number - # rounds) x 16, keyaddr reg points to last key
if fully unroll round loop, could also pre-load round keys into registers

lqx $Rroundkey, $Rroundkeys, $Rround # get round key
xor $Rstate, $Rstate, $Rroundkey # add it to state

brnz $Rround, Lroundloop # branch if not last round
ai $Rround, $Rround, 0x10 # next round (*16)

LAST ROUND
SIMD version of S-box
presumes S-box table pre-loaded into sbox1 - sboxF
andbi $Ridx, $Rstate, 0x1F # lower 5 bits for partial lookup

shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111

andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)
ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11

16

andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1
clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup

SIMD version of shift rows
presumes shiftrows reg pre-loaded to:
0x 00 05 0A 0F 04 09 0E 03 08 0D 02 07 0C 01 06 0B

shufb $Rstate, $Rstate, $Rstate, $Rshiftrows # move bytes around
SIMD version of Add Round Key
assumes round reg has (round number - # rounds) x 16, keyaddr reg points to last key
if fully unroll round loop, could also pre-load round keys into registers

lqx $Rroundkey, $Rroundkeys, $Rround # get round key
xor $Rstate, $Rstate, $Rroundkey # add it to state

use similar count-up with block counter
lqx $Rdatablk, $Rdat, $Rblock # get next block of data

xor $Rdatablk, $Rstate, $Rdatablk # add it to encrypted CTR
stqx $Rdatablk, $Rdat, $Rblock # overwrite block of data

ai $Rblock, $Rblock, 0x10 # next block
brnz $Rblock, Lblockloop # branch if not last block
bi $lr # return
.ident "DRC"

17

C Final AES CTR Assembly Code

Here is the final version of the CTR4 code. This has been painstakingly optimized. (As a result, it is pretty
much unreadable.) Within the block and round loops: every odd-pipeline instruction is dual-issued; there
are no data dependency stalls; all branches are correctly hinted (except the final iteration of the block loop).
The same is true in the setup (before the block loop), except the hint table loop has some data dependency
stalls and its last iteration branch is unhinted.

The format is as in the optimization examples above: named registers begin $R and statement labels begin
L; pipeline 0 instructions are flush left while pipeline 1 instructions are indented; dual-issued instruction pairs
are indicated by braces.

Revised AES function, CTR mode, 4-block version
2009 Jan 8 Thu 14:25:44 modified to take # bytes, not blocks
5 input parameters: (NO error checking)
pointer to data buffer
pointer to Round Key buffer
number of data BYTES (was BLOCKS)
number of rounds
counter value for first data block
1 output parameter:
counter value for next data block

.file "aes_ctr.s"

.section mydata,"a",@progbits

.align 4
Sbox:

.octa 0x637C777BF26B6FC53001672BFED7AB76

.octa 0xCA82C97DFA5947F0ADD4A2AF9CA472C0

.octa 0xB7FD9326363FF7CC34A5E5F171D83115

.octa 0x04C723C31896059A071280E2EB27B275

.octa 0x09832C1A1B6E5AA0523BD6B329E32F84

.octa 0x53D100ED20FCB15B6ACBBE394A4C58CF

.octa 0xD0EFAAFB434D338545F9027F503C9FA8

.octa 0x51A3408F929D38F5BCB6DA2110FFF3D2

.octa 0xCD0C13EC5F974417C4A77E3D645D1973

.octa 0x60814FDC222A908846EEB814DE5E0BDB

.octa 0xE0323A0A4906245CC2D3AC629195E479

.octa 0xE7C8376D8DD54EA96C56F4EA657AAE08

.octa 0xBA78252E1CA6B4C6E8DD741F4BBD8B8A

.octa 0x703EB5664803F60E613557B986C11D9E

.octa 0xE1F8981169D98E949B1E87E9CE5528DF

.octa 0x8CA1890DBFE6426841992D0FB054BB16
ShiftRows:

.octa 0x00050A0F04090E03080D02070C01060B # standard (row 0)

.octa 0x050A0F00090E03040D02070801060B0C # row 1 on top
RotRow2:

.octa 0x02030001060704050A0B08090E0F0C0D # rotate row 2 to top
Note: to rotate word by bytes using shufb:
000102030405060708090A0B0C0D0E0F
0102030005060704090A0B080D0E0F0C
02030001060704050A0B08090E0F0C0D
03000102070405060B08090A0F0C0D0E
SaveReg: # to save registers

.fill 4*4, 4, 0 # (size cannot exceed 8)
BranchHints: # for dynamic br. hints

18

.fill 16*4, 4, 0 # (size cannot exceed 8)
.text

.global aes_ctr

.type aes_ctr, @function

##REGISTER DEFINITIONS##
in/out params

.set Rin_dat, 3 # 1st param = ptr to block

.set Rin_key, 4 # 2nd param = ptr to keys

.set Rin_nb, 5 # 3rd param = number of bytes

.set Rin_nr, 6 # 4th param = number of rounds

.set Rin_ctr, 7 # 5th param = counter initial value

.set Rout_ctr, 3 # output param = counter next value
per block values

.set Rsbox01, 2 #

.set Rsbox23, 13 #

.set Rsbox45, 4 #

.set Rsbox67, 5 #

.set Rsbox89, 6 #

.set RsboxAB, 7 #

.set RsboxCD, 8 #

.set RsboxEF, 9 #

.set Rbit5, 10 #

.set Rbit6, 11 #

.set Rbit7, 12 #

.set Rctr, 3 # CTR = output (=1st input)

.set Rstate, Rbit7 # block State

.set Ridx, RsboxEF #

.set Rsbox03, Rsbox01 #

.set Rsbox47, Rsbox45 #

.set Rsbox8B, Rsbox89 #

.set RsboxCF, RsboxCD #

.set Rsbox07, Rsbox01 #

.set Rsbox8F, Rsbox89 #

.set Rrow0, 2 #

.set Rrow1, 13 #

.set Rrow01, 4 #

.set Rrow23, 5 #

.set Rrows, 6 #

.set Rtimes2, 7 #

.set Rzero, 8 # temporary zero reg

.set Rdat, Rsbox23 # ptr to data for block

.set Rdatablk, Rbit5 #

.set NR, 12 # number of reg per block

independent of block:
.set Rblockout, Rsbox01 # temporary copy of block counter
.set Rhint, 51 # branch hint
.set Rhints, 52 # branch hint table
.set Rroundkey0, 53 #
.set Rblock, 54 # block counter (0th block of set)
.set Rround, 55 # Round counter
.set Rroundkey, 56 #

19

constant values:
.set Rmod, 50 # for mod GF poly
.set Rblkpad, 57 # block pad
.set Rnrounds, 58 # # of Rounds
.set Rroundkeys, 59 # Keys Ptr (const)
.set Rincr, 60 # increment for CTR
.set Rshiftrows, 61 # ShiftRows (const)
.set Rshiftrow1, 62 #
.set Rrotrow2, 63 #
.set Rsbox0, 64 # S-box Table (const)
.set Rsbox1, 65 # S-box Table (const)
.set Rsbox2, 66 # S-box Table (const)
.set Rsbox3, 67 # S-box Table (const)
.set Rsbox4, 68 # S-box Table (const)
.set Rsbox5, 69 # S-box Table (const)
.set Rsbox6, 70 # S-box Table (const)
.set Rsbox7, 71 # S-box Table (const)
.set Rsbox8, 72 # S-box Table (const)
.set Rsbox9, 73 # S-box Table (const)
.set RsboxA, 74 # S-box Table (const)
.set RsboxB, 75 # S-box Table (const)
.set RsboxC, 76 # S-box Table (const)
.set RsboxD, 77 # S-box Table (const)
.set RsboxE, 78 # S-box Table (const)
.set RsboxF, 79 # S-box Table (const)

.align 3
aes_ctr:
setup so round reg counts up to zero from neg.
then adjust pointer to roundkeys so sum points to round key
use similar count-up with block counter
for 4 blocks at once, keep track of padding at end
load tables into registers{ shli $Rnrounds, $Rin_nr, 4 # *16 to address quadwords

hbrr Lhinttabloop_end, Lhinttabloop # hint for hint loop{ il $Rincr, 1
lqr $Rsbox0, Sbox+0x00{ ai $Rblkpad, $Rin_nb, 15 # round up to whole blocks
lqr $Rsbox1, Sbox+0x10{ sfi $Rblock, $Rin_nb, 0 # -(#bytes)
rotqmbyi $Rincr, $Rincr, -12 # move to rightmost word{ sfi $Rnrounds, $Rnrounds, 0x10 # neg. of (#rounds-1)*16
lqr $Rsbox2, Sbox+0x20{ andi $Rblkpad, $Rblkpad, 48 # [(# blocks) % 4] * 16
lqr $Rsbox3, Sbox+0x30{ sf $Rroundkeys, $Rnrounds, $Rin_key # roundkeys+round -> round key
lqr $Rsbox4, Sbox+0x40{ andi $Rblock, $Rblock, -64 # round up to (4-block)s, neg.
lqr $Rsbox5, Sbox+0x50{ ai $Rroundkeys, $Rroundkeys, 0x10 # adjust since lookup before incr
lqr $Rsbox6, Sbox+0x60{ sf $Rdat, $Rblock, $Rin_dat # dataptr+block -> data
lqr $Rsbox7, Sbox+0x70

20

{ ai $Rctr, $Rin_ctr, 0 # move CTR (clobber Rin_dat!)
biz $Rin_nb, $lr # return if no bytes{ ai $(Rdat + NR), $Rdat, 0x10 # data ptr for block 1
lqr $Rsbox8, Sbox+0x80{ a $(Rctr + NR), $Rin_ctr, $Rincr # increment CTR for block 1
lqr $Rsbox9, Sbox+0x90{ ai $(Rdat + 2*NR), $Rdat, 0x20 # data ptr for block 2
lqr $RsboxA, Sbox+0xA0{ a $(Rctr + 2*NR), $(Rctr + NR), $Rincr # increment CTR for block 2
lqr $RsboxB, Sbox+0xB0{ ai $(Rdat + 3*NR), $Rdat, 0x30 # data ptr for block 3
lqr $RsboxC, Sbox+0xC0{ a $(Rctr + 3*NR), $(Rctr + 2*NR), $Rincr # increment CTR for block 3
lqr $RsboxD, Sbox+0xD0{ rotmi $Rblkpad, $Rblkpad, -4 # save info on (# blocks) % 4
lqr $RsboxE, Sbox+0xE0{ shli $Rincr, $Rincr, 2 # shift incr for 4 blocks
lqr $RsboxF, Sbox+0xF0{ ilh $Rmod, 0x1B1B # 00 -> 1B -> 1B
lqd $Rroundkey0, 0($Rin_key) # get round key #0{ ila $Rhints, BranchHints
lqr $Rshiftrows, ShiftRows{ ila $Rhint, Lroundloop
lqr $Rshiftrow1, ShiftRows+0x10{ sf $Rhints, $Rnrounds, $Rhints # hints+round -> round hint
lqr $Rrotrow2, RotRow2{ ai $Rround, $Rnrounds, 0 # initialize round counter
stqr $Rdat, SaveReg+0x00 # save data ptr{ ila $8, Lroundloop_end + 4 # address not to loop
stqr $(Rdat + NR), SaveReg+0x10 # save data ptr
stqr $(Rdat + 2*NR), SaveReg+0x20 # save data ptr

Lhinttabloop:
stqx $Rhint, $Rhints, $Rround # put hint for each round

ai $Rround, $Rround, 0x10 # next round (*16)
Lhinttabloop_end:

brnz $Rround, Lhinttabloop # branch if not last round
.align 3{ xor $(Rstate + NR), $(Rctr + NR), $Rroundkey0
stqx $Rhint, $Rhints, $Rround # put hint for next round loop{ xor $Rstate, $Rctr, $Rroundkey0 # add RK0 to CTR
stqd $8, -32($Rhints) # store hint not to loop{ xor $(Rstate + 2*NR), $(Rctr + 2*NR), $Rroundkey0
shlqbyi $Rround, $Rnrounds, 0 # initialize round counter

ROUND 0 for first set of blocks:{ xor $(Rstate + 3*NR), $(Rctr + 3*NR), $Rroundkey0
stqr $(Rdat + 3*NR), SaveReg+0x30 # save data ptr

Lblockloop:
.align 3

initialize:
a $Rctr, $Rctr, $Rincr # increment CTR
a $(Rctr + NR), $(Rctr + NR), $Rincr
a $(Rctr + 2*NR), $(Rctr + 2*NR), $Rincr
a $(Rctr + 3*NR), $(Rctr + 3*NR), $Rincr

Lroundloop:

21

SIMD version of S-box
.align 3{ andbi $Ridx, $Rstate, 0x1F # lower 5 bits (0-4) for lookup
hbr Lroundloop_end, $Rhint # hint for round loop{ andbi $(Ridx + NR), $(Rstate + NR), 0x1F
lqx $Rhint, $Rhints, $Rround # get hint for next round{ andbi $(Ridx + 2*NR), $(Rstate + 2*NR), 0x1F
shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000{ andbi $(Ridx + 3*NR), $(Rstate + 3*NR), 0x1F
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001{ andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010{ andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011{ ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100{ ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101{ clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110{ selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111{ selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
shufb $(Rsbox23 + NR), $Rsbox2, $Rsbox3, $(Ridx + NR){ selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
shufb $(Rsbox23 + 2*NR), $Rsbox2, $Rsbox3, $(Ridx + 2*NR){ selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
shufb $(Rsbox67 + NR), $Rsbox6, $Rsbox7, $(Ridx + NR){ selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11
shufb $(Rsbox89 + 2*NR), $Rsbox8, $Rsbox9, $(Ridx + 2*NR){ andbi $(Rbit5 + NR), $(Rstate + NR), 0x20
shufb $(Rsbox01 + NR), $Rsbox0, $Rsbox1, $(Ridx + NR){ selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1
shufb $(RsboxAB + 3*NR), $RsboxA, $RsboxB, $(Ridx + 3*NR){ andbi $(Rbit5 + 2*NR), $(Rstate + 2*NR), 0x20
shufb $(Rsbox01 + 2*NR), $Rsbox0, $Rsbox1, $(Ridx + 2*NR){ selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup
shufb $(RsboxCD + 3*NR), $RsboxC, $RsboxD, $(Ridx + 3*NR){ andbi $(Rbit5 + 3*NR), $(Rstate + 3*NR), 0x20
shufb $(Rsbox01 + 3*NR), $Rsbox0, $Rsbox1, $(Ridx + 3*NR){ ceqbi $(Rbit5 + NR), $(Rbit5 + NR), 0x20
shufb $Rrow1, $Rstate, $Rstate, $Rshiftrow1 # move bytes: row 1{ ceqbi $(Rbit5 + 2*NR), $(Rbit5 + 2*NR), 0x20
shufb $Rrow0, $Rstate, $Rstate, $Rshiftrows # move bytes around: row 0{ ceqbi $(Rbit5 + 3*NR), $(Rbit5 + 3*NR), 0x20
shufb $(Rsbox23 + 3*NR), $Rsbox2, $Rsbox3, $(Ridx + 3*NR){ andbi $(Rbit6 + NR), $(Rstate + NR), 0x40
shufb $(Rsbox45 + NR), $Rsbox4, $Rsbox5, $(Ridx + NR){ andbi $(Rbit6 + 2*NR), $(Rstate + 2*NR), 0x40
shufb $(Rsbox45 + 2*NR), $Rsbox4, $Rsbox5, $(Ridx + 2*NR){ xor $Rrow01, $Rrow0, $Rrow1 # (0+1)
lqx $Rroundkey, $Rroundkeys, $Rround # get round key{ andbi $(Rbit6 + 3*NR), $(Rstate + 3*NR), 0x40
shufb $(Rsbox45 + 3*NR), $Rsbox4, $Rsbox5, $(Ridx + 3*NR)

22

{ ceqbi $(Rbit6 + NR), $(Rbit6 + NR), 0x40
rotqbii $Rtimes2, $Rrow01, 1 # mul by 2{ ceqbi $(Rbit6 + 2*NR), $(Rbit6 + 2*NR), 0x40
shufb $(Rsbox67 + 2*NR), $Rsbox6, $Rsbox7, $(Ridx + 2*NR){ ceqbi $(Rbit6 + 3*NR), $(Rbit6 + 3*NR), 0x40
shufb $(Rsbox67 + 3*NR), $Rsbox6, $Rsbox7, $(Ridx + 3*NR){ clgtbi $(Rbit7 + NR), $(Rstate + NR), 0x7F
shufb $(Rsbox89 + NR), $Rsbox8, $Rsbox9, $(Ridx + NR){ clgtbi $(Rbit7 + 2*NR), $(Rstate + 2*NR), 0x7F
gbb $Rbit7, $Rtimes2 # get lsb (was msb){ clgtbi $(Rbit7 + 3*NR), $(Rstate + 3*NR), 0x7F
shufb $(Rsbox89 + 3*NR), $Rsbox8, $Rsbox9, $(Ridx + 3*NR){ selb $(Rsbox03 + NR), $(Rsbox01 + NR), $(Rsbox23 + NR), $(Rbit5 + NR)
shufb $(RsboxAB + NR), $RsboxA, $RsboxB, $(Ridx + NR){ selb $(Rsbox03 + 2*NR), $(Rsbox01 + 2*NR), $(Rsbox23 + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxAB + 2*NR), $RsboxA, $RsboxB, $(Ridx + 2*NR){ selb $(Rsbox03 + 3*NR), $(Rsbox01 + 3*NR), $(Rsbox23 + 3*NR), $(Rbit5 + 3*NR)
fsmb $Rbit7, $Rbit7 # byte selector{ selb $(Rsbox47 + NR), $(Rsbox45 + NR), $(Rsbox67 + NR), $(Rbit5 + NR)
shufb $(RsboxCD + NR), $RsboxC, $RsboxD, $(Ridx + NR){ selb $(Rsbox47 + 2*NR), $(Rsbox45 + 2*NR), $(Rsbox67 + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxCD + 2*NR), $RsboxC, $RsboxD, $(Ridx + 2*NR){ selb $(Rsbox47 + 3*NR), $(Rsbox45 + 3*NR), $(Rsbox67 + 3*NR), $(Rbit5 + 3*NR)
shufb $(RsboxEF + NR), $RsboxE, $RsboxF, $(Ridx + NR){ selb $(Rsbox8B + NR), $(Rsbox89 + NR), $(RsboxAB + NR), $(Rbit5 + NR)
rotqbyi $Rbit7, $Rbit7, -1 # rot back to source byte{ selb $(Rsbox8B + 2*NR), $(Rsbox89 + 2*NR), $(RsboxAB + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxEF + 2*NR), $RsboxE, $RsboxF, $(Ridx + 2*NR){ selb $(Rsbox8B + 3*NR), $(Rsbox89 + 3*NR), $(RsboxAB + 3*NR), $(Rbit5 + 3*NR)
shufb $(RsboxEF + 3*NR), $RsboxE, $RsboxF, $(Ridx + 3*NR)

selb $(RsboxCF + NR), $(RsboxCD + NR), $(RsboxEF + NR), $(Rbit5 + NR)
selb $(Rsbox07 + NR), $(Rsbox03 + NR), $(Rsbox47 + NR), $(Rbit6 + NR)
selb $(Rsbox8F + NR), $(Rsbox8B + NR), $(RsboxCF + NR), $(Rbit6 + NR)
selb $(RsboxCF + 2*NR), $(RsboxCD + 2*NR), $(RsboxEF + 2*NR), $(Rbit5 + 2*NR)
selb $(Rstate + NR), $(Rsbox07 + NR), $(Rsbox8F + NR), $(Rbit7 + NR)
selb $(Rsbox07 + 2*NR), $(Rsbox03 + 2*NR), $(Rsbox47 + 2*NR), $(Rbit6 + 2*NR)

.align 3{ selb $(Rsbox8F + 2*NR), $(Rsbox8B + 2*NR), $(RsboxCF + 2*NR), $(Rbit6 + 2*NR)
shufb $(Rrow1 + NR), $(Rstate + NR), $(Rstate + NR), $Rshiftrow1{ selb $(RsboxCF + 3*NR), $(RsboxCD + 3*NR), $(RsboxEF + 3*NR), $(Rbit5 + 3*NR)
shufb $(Rrow0 + NR), $(Rstate + NR), $(Rstate + NR), $Rshiftrows

selb $(Rstate + 2*NR), $(Rsbox07 + 2*NR), $(Rsbox8F + 2*NR), $(Rbit7 + 2*NR)
selb $(Rsbox07 + 3*NR), $(Rsbox03 + 3*NR), $(Rsbox47 + 3*NR), $(Rbit6 + 3*NR){ selb $(Rsbox8F + 3*NR), $(Rsbox8B + 3*NR), $(RsboxCF + 3*NR), $(Rbit6 + 3*NR)

shufb $(Rrow1 + 2*NR), $(Rstate + 2*NR), $(Rstate + 2*NR), $Rshiftrow1{ xor $(Rrows + NR), $(Rrow1 + NR), $Rroundkey
shufb $(Rrow0 + 2*NR), $(Rstate + 2*NR), $(Rstate + 2*NR), $Rshiftrows

selb $(Rstate + 3*NR), $(Rsbox07 + 3*NR), $(Rsbox8F + 3*NR), $(Rbit7 + 3*NR)
xor $(Rrow01 + NR), $(Rrow0 + NR), $(Rrow1 + NR){ xor $(Rrows + 2*NR), $(Rrow1 + 2*NR), $Rroundkey

shufb $(Rrow1 + 3*NR), $(Rstate + 3*NR), $(Rstate + 3*NR), $Rshiftrow1{ xor $(Rrow01 + 2*NR), $(Rrow0 + 2*NR), $(Rrow1 + 2*NR)
shufb $(Rrow0 + 3*NR), $(Rstate + 3*NR), $(Rstate + 3*NR), $Rshiftrows

SIMD version of Shift Rows and Mix Columns and Add Round Key

23

{ ai $Rround, $Rround, 0x10 # next round (*16)
fsmbi $Rzero, 0{ xor $Rrows, $Rrow1, $Rroundkey # 1 + RK
shufb $Rrow23, $Rrow01, $Rrow01, $Rrotrow2 # 2+3

xor $(Rrows + 3*NR), $(Rrow1 + 3*NR), $Rroundkey
xor $(Rrow01 + 3*NR), $(Rrow0 + 3*NR), $(Rrow1 + 3*NR){ cgtbi $(Rbit7 + NR), $(Rrow01 + NR), -1

shufb $(Rrow23 + NR), $(Rrow01 + NR), $(Rrow01 + NR), $Rrotrow2{ cgtbi $(Rbit7 + 2*NR), $(Rrow01 + 2*NR), -1
shufb $(Rrow23 + 2*NR), $(Rrow01 + 2*NR), $(Rrow01 + 2*NR), $Rrotrow2{ cgtbi $(Rbit7 + 3*NR), $(Rrow01 + 3*NR), -1
shufb $(Rrow23 + 3*NR), $(Rrow01 + 3*NR), $(Rrow01 + 3*NR), $Rrotrow2{ xor $Rrows, $Rrows, $Rrow23 # 1+2+3 + RK
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # 00 -> 1B, FF -> 80{ xor $(Rrows + NR), $(Rrows + NR), $(Rrow23 + NR)
shlqbii $(Rtimes2 + NR), $(Rrow01 + NR), 1{ xor $(Rrows + 2*NR), $(Rrows + 2*NR), $(Rrow23 + 2*NR)
shlqbii $(Rtimes2 + 2*NR), $(Rrow01 + 2*NR), 1{ xor $(Rrows + 3*NR), $(Rrows + 3*NR), $(Rrow23 + 3*NR)
shlqbii $(Rtimes2 + 3*NR), $(Rrow01 + 3*NR), 1{ andbi $Rtimes2, $Rtimes2, 0xFE # clear lsb
shufb $Rbit7, $Rmod, $Rmod, $Rbit7 # 1B -> 1B, 80 -> 00{ andbi $(Rtimes2 + NR), $(Rtimes2 + NR), 0xFE
shufb $(Rbit7 + NR), $Rmod, $Rmod, $(Rbit7 + NR){ andbi $(Rtimes2 + 2*NR), $(Rtimes2 + 2*NR), 0xFE
shufb $(Rbit7 + 2*NR), $Rmod, $Rmod, $(Rbit7 + 2*NR){ andbi $(Rtimes2 + 3*NR), $(Rtimes2 + 3*NR), 0xFE
shufb $(Rbit7 + 3*NR), $Rmod, $Rmod, $(Rbit7 + 3*NR){ xor $Rrows, $Rrows, $Rtimes2 # 2*(0+1) + (1+2+3) + RK
shufb $Rbit7, $Rmod, $Rzero, $Rbit7 # 1B -> 00, 00 -> 1B{ xor $(Rrows + NR), $(Rrows + NR), $(Rtimes2 + NR)
shufb $(Rbit7 + NR), $Rmod, $Rmod, $(Rbit7 + NR){ xor $(Rrows + 2*NR), $(Rrows + 2*NR), $(Rtimes2 + 2*NR)
shufb $(Rbit7 + 2*NR), $Rmod, $Rmod, $(Rbit7 + 2*NR){ xor $(Rrows + 3*NR), $(Rrows + 3*NR), $(Rtimes2 + 3*NR)
shufb $(Rbit7 + 3*NR), $Rmod, $Rmod, $(Rbit7 + 3*NR)

xor $Rstate, $Rrows, $Rbit7 # mod GF poly
xor $(Rstate + NR), $(Rrows + NR), $(Rbit7 + NR)
xor $(Rstate + 2*NR), $(Rrows + 2*NR), $(Rbit7 + 2*NR)

.align 3{ xor $(Rstate + 3*NR), $(Rrows + 3*NR), $(Rbit7 + 3*NR)
Lroundloop_end:

brnz $Rround, Lroundloop # branch if not last round
LAST ROUND
SIMD version of S-box

.align 3{ andbi $Ridx, $Rstate, 0x1F # lower 5 bits (0-4) for lookup
hbrr Lblockloop_end, Lblockloop # hint for block loop{ andbi $(Ridx + NR), $(Rstate + NR), 0x1F
lqd $Rroundkey, 0($Rroundkeys) # get round key

andbi $(Ridx + 2*NR), $(Rstate + 2*NR), 0x1F
andbi $(Ridx + 3*NR), $(Rstate + 3*NR), 0x1F{ andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)

shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000

24

{ andbi $(Rbit5 + NR), $(Rstate + NR), 0x20
shufb $(Rsbox01 + NR), $Rsbox0, $Rsbox1, $(Ridx + NR){ andbi $(Rbit5 + 2*NR), $(Rstate + 2*NR), 0x20
shufb $(Rsbox01 + 2*NR), $Rsbox0, $Rsbox1, $(Ridx + 2*NR){ andbi $(Rbit5 + 3*NR), $(Rstate + 3*NR), 0x20
shufb $(Rsbox01 + 3*NR), $Rsbox0, $Rsbox1, $(Ridx + 3*NR){ ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001{ ceqbi $(Rbit5 + NR), $(Rbit5 + NR), 0x20
shufb $(Rsbox23 + NR), $Rsbox2, $Rsbox3, $(Ridx + NR){ ceqbi $(Rbit5 + 2*NR), $(Rbit5 + 2*NR), 0x20
shufb $(Rsbox23 + 2*NR), $Rsbox2, $Rsbox3, $(Ridx + 2*NR){ ceqbi $(Rbit5 + 3*NR), $(Rbit5 + 3*NR), 0x20
shufb $(Rsbox23 + 3*NR), $Rsbox2, $Rsbox3, $(Ridx + 3*NR){ andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010{ andbi $(Rbit6 + NR), $(Rstate + NR), 0x40
shufb $(Rsbox45 + NR), $Rsbox4, $Rsbox5, $(Ridx + NR){ andbi $(Rbit6 + 2*NR), $(Rstate + 2*NR), 0x40
shufb $(Rsbox45 + 2*NR), $Rsbox4, $Rsbox5, $(Ridx + 2*NR){ andbi $(Rbit6 + 3*NR), $(Rstate + 3*NR), 0x40
shufb $(Rsbox45 + 3*NR), $Rsbox4, $Rsbox5, $(Ridx + 3*NR){ ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011{ ceqbi $(Rbit6 + NR), $(Rbit6 + NR), 0x40
shufb $(Rsbox67 + NR), $Rsbox6, $Rsbox7, $(Ridx + NR){ ceqbi $(Rbit6 + 2*NR), $(Rbit6 + 2*NR), 0x40
shufb $(Rsbox67 + 2*NR), $Rsbox6, $Rsbox7, $(Ridx + 2*NR){ ceqbi $(Rbit6 + 3*NR), $(Rbit6 + 3*NR), 0x40
shufb $(Rsbox67 + 3*NR), $Rsbox6, $Rsbox7, $(Ridx + 3*NR){ clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100{ clgtbi $(Rbit7 + NR), $(Rstate + NR), 0x7F
shufb $(Rsbox89 + NR), $Rsbox8, $Rsbox9, $(Ridx + NR){ clgtbi $(Rbit7 + 2*NR), $(Rstate + 2*NR), 0x7F
shufb $(Rsbox89 + 2*NR), $Rsbox8, $Rsbox9, $(Ridx + 2*NR){ clgtbi $(Rbit7 + 3*NR), $(Rstate + 3*NR), 0x7F
shufb $(Rsbox89 + 3*NR), $Rsbox8, $Rsbox9, $(Ridx + 3*NR){ selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101{ selb $(Rsbox03 + NR), $(Rsbox01 + NR), $(Rsbox23 + NR), $(Rbit5 + NR)
shufb $(RsboxAB + NR), $RsboxA, $RsboxB, $(Ridx + NR){ selb $(Rsbox03 + 2*NR), $(Rsbox01 + 2*NR), $(Rsbox23 + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxAB + 2*NR), $RsboxA, $RsboxB, $(Ridx + 2*NR){ selb $(Rsbox03 + 3*NR), $(Rsbox01 + 3*NR), $(Rsbox23 + 3*NR), $(Rbit5 + 3*NR)
shufb $(RsboxAB + 3*NR), $RsboxA, $RsboxB, $(Ridx + 3*NR){ selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110{ selb $(Rsbox47 + NR), $(Rsbox45 + NR), $(Rsbox67 + NR), $(Rbit5 + NR)
shufb $(RsboxCD + NR), $RsboxC, $RsboxD, $(Ridx + NR){ selb $(Rsbox47 + 2*NR), $(Rsbox45 + 2*NR), $(Rsbox67 + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxCD + 2*NR), $RsboxC, $RsboxD, $(Ridx + 2*NR){ selb $(Rsbox47 + 3*NR), $(Rsbox45 + 3*NR), $(Rsbox67 + 3*NR), $(Rbit5 + 3*NR)
shufb $(RsboxCD + 3*NR), $RsboxC, $RsboxD, $(Ridx + 3*NR)

25

{ selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111{ selb $(Rsbox8B + NR), $(Rsbox89 + NR), $(RsboxAB + NR), $(Rbit5 + NR)
shufb $(RsboxEF + NR), $RsboxE, $RsboxF, $(Ridx + NR){ selb $(Rsbox8B + 2*NR), $(Rsbox89 + 2*NR), $(RsboxAB + 2*NR), $(Rbit5 + 2*NR)
shufb $(RsboxEF + 2*NR), $RsboxE, $RsboxF, $(Ridx + 2*NR){ selb $(Rsbox8B + 3*NR), $(Rsbox89 + 3*NR), $(RsboxAB + 3*NR), $(Rbit5 + 3*NR)
shufb $(RsboxEF + 3*NR), $RsboxE, $RsboxF, $(Ridx + 3*NR){ selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11
lqr $Rdat, SaveReg+0x00 # get data ptr{ selb $(RsboxCF + NR), $(RsboxCD + NR), $(RsboxEF + NR), $(Rbit5 + NR)
lqr $(Rdat + NR), SaveReg+0x10 # get data ptr{ selb $(RsboxCF + 2*NR), $(RsboxCD + 2*NR), $(RsboxEF + 2*NR), $(Rbit5 + 2*NR)
lqr $(Rdat + 2*NR), SaveReg+0x20 # get data ptr{ selb $(RsboxCF + 3*NR), $(RsboxCD + 3*NR), $(RsboxEF + 3*NR), $(Rbit5 + 3*NR)
lqr $(Rdat + 3*NR), SaveReg+0x30 # get data ptr

selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
selb $(Rsbox07 + NR), $(Rsbox03 + NR), $(Rsbox47 + NR), $(Rbit6 + NR)
selb $(Rsbox07 + 2*NR), $(Rsbox03 + 2*NR), $(Rsbox47 + 2*NR), $(Rbit6 + 2*NR)
selb $(Rsbox07 + 3*NR), $(Rsbox03 + 3*NR), $(Rsbox47 + 3*NR), $(Rbit6 + 3*NR){ selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1

lqx $Rdatablk, $Rdat, $Rblock # get next block of data{ selb $(Rsbox8F + NR), $(Rsbox8B + NR), $(RsboxCF + NR), $(Rbit6 + NR)
lqx $(Rdatablk + NR), $(Rdat + NR), $Rblock{ selb $(Rsbox8F + 2*NR), $(Rsbox8B + 2*NR), $(RsboxCF + 2*NR), $(Rbit6 + 2*NR)
lqx $(Rdatablk + 2*NR), $(Rdat + 2*NR), $Rblock{ selb $(Rsbox8F + 3*NR), $(Rsbox8B + 3*NR), $(RsboxCF + 3*NR), $(Rbit6 + 3*NR)
lqx $(Rdatablk + 3*NR), $(Rdat + 3*NR), $Rblock

selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup
selb $(Rstate + NR), $(Rsbox07 + NR), $(Rsbox8F + NR), $(Rbit7 + NR)
selb $(Rstate + 2*NR), $(Rsbox07 + 2*NR), $(Rsbox8F + 2*NR), $(Rbit7 + 2*NR)

.align 3{ selb $(Rstate + 3*NR), $(Rsbox07 + 3*NR), $(Rsbox8F + 3*NR), $(Rbit7 + 3*NR)
shlqbyi $Rround, $Rnrounds, 0 # initialize round counter

SIMD version of shift rows{ xor $Rdatablk, $Rdatablk, $Rroundkey # add RK to data
shufb $Rstate, $Rstate, $Rstate, $Rshiftrows # move bytes around{ xor $(Rdatablk + NR), $(Rdatablk + NR), $Rroundkey
shufb $(Rstate + NR), $(Rstate + NR), $(Rstate + NR), $Rshiftrows{ xor $(Rdatablk + 2*NR), $(Rdatablk + 2*NR), $Rroundkey
shufb $(Rstate + 2*NR), $(Rstate + 2*NR), $(Rstate + 2*NR), $Rshiftrows{ xor $(Rdatablk + 3*NR), $(Rdatablk + 3*NR), $Rroundkey
shufb $(Rstate + 3*NR), $(Rstate + 3*NR), $(Rstate + 3*NR), $Rshiftrows

SIMD version of Add Round Key{ xor $Rdatablk, $Rdatablk, $Rstate # now encrypted data
shlqbyi $Rblockout, $Rblock, 0 # copy block counter

xor $(Rdatablk + NR), $(Rdatablk + NR), $(Rstate + NR)
xor $(Rdatablk + 2*NR), $(Rdatablk + 2*NR), $(Rstate + 2*NR)
xor $(Rdatablk + 3*NR), $(Rdatablk + 3*NR), $(Rstate + 3*NR)

use similar count-up with block counter
.align 3{ ai $Rblock, $Rblock, 0x40 # next block
stqx $Rdatablk, $Rdat, $Rblockout # overwrite block of data

26

{ xor $(Rstate + NR), $(Rctr + NR), $Rroundkey0
stqx $(Rdatablk + NR), $(Rdat + NR), $Rblockout{ xor $(Rstate + 2*NR), $(Rctr + 2*NR), $Rroundkey0
stqx $(Rdatablk + 2*NR), $(Rdat + 2*NR), $Rblockout{ xor $(Rstate + 3*NR), $(Rctr + 3*NR), $Rroundkey0
stqx $(Rdatablk + 3*NR), $(Rdat + 3*NR), $Rblockout{ xor $Rstate, $Rctr, $Rroundkey0 # add RK0 to CTR for next block

Lblockloop_end:
brnz $Rblock, Lblockloop # branch if not last block

be sure to return correct counter for block after last
rotqmbyi $Rblkpad, $Rblkpad, -12 # move to rightmost word

sf $(Rctr + NR), $Rincr, $Rctr # back up loop
ceqi $2, $Rblkpad, 0
selb $Rctr, $(Rctr + NR), $Rctr, $2 # # to pad{ a $Rout_ctr, $Rctr, $Rblkpad # now +1 for last block

bi $lr # return
.ident "DRC"

27

D AES CBC Assembly Code

Here is our optimized version of the CBC code (called CBC2). Since the feedback of this cryptographic
mode dictates only one block can be done at a time, the resulting code is somewhat readable. In particular,
this code shows our one-block optimized MixColumns (with ShiftRows and AddRoundKey).

There are still some unavoidable data dependency stalls in this code, where an instruction waits to use
the output of a previous one. (Of the instructions used: all pipeline 0 instructions last 2 cycles except rotate
and shift instructions are 4 cycles; all pipeline 1 instructions last 4 cycles except load and store instructions
are 6 cycles and branches take 1 if correctly hinted or not taken.)

The format is as in the examples above: named registers begin $R and statement labels begin L; pipeline
0 instructions are flush left while pipeline 1 instructions are indented; dual-issued instruction pairs are
indicated by braces.

Note: the no-operation instructions (nop and lnop) are only to keep the instruction address parity aligned
with the pipeline, to allow later dual issues; of course, they themselves are dual-issued and do not affect the
timing; they could have been replaced by .align directives.

AES function, CBC mode, 2008 Dec 14 Sun 16:32:44
with NEW improved version of Mix Columns
(moved polynomial add to State)
5 input parameters: (NO error checking)
pointer to data buffer
pointer to Round Key buffer
number of data blocks (must be compatible with length of data buffer)
number of rounds (must be compatible with length of Round Key buffer)
initial value for first data block
NO output parameters

.file "aes_cbc.s"

.section mydata,"a",@progbits

.align 4
Sbox:

.octa 0x637C777BF26B6FC53001672BFED7AB76

.octa 0xCA82C97DFA5947F0ADD4A2AF9CA472C0

.octa 0xB7FD9326363FF7CC34A5E5F171D83115

.octa 0x04C723C31896059A071280E2EB27B275

.octa 0x09832C1A1B6E5AA0523BD6B329E32F84

.octa 0x53D100ED20FCB15B6ACBBE394A4C58CF

.octa 0xD0EFAAFB434D338545F9027F503C9FA8

.octa 0x51A3408F929D38F5BCB6DA2110FFF3D2

.octa 0xCD0C13EC5F974417C4A77E3D645D1973

.octa 0x60814FDC222A908846EEB814DE5E0BDB

.octa 0xE0323A0A4906245CC2D3AC629195E479

.octa 0xE7C8376D8DD54EA96C56F4EA657AAE08

.octa 0xBA78252E1CA6B4C6E8DD741F4BBD8B8A

.octa 0x703EB5664803F60E613557B986C11D9E

.octa 0xE1F8981169D98E949B1E87E9CE5528DF

.octa 0x8CA1890DBFE6426841992D0FB054BB16
ShiftRows:

.octa 0x00050A0F04090E03080D02070C01060B # standard (row 0)

.octa 0x050A0F00090E03040D02070801060B0C # row 1 on top

.octa 0x0A0F00050E0304090207080D060B0C01 # row 2 on top

.octa 0x0F00050A0304090E07080D020B0C0106 # row 3 on top
BranchHints: # for dynamic br. hints

.fill 16*4, 4, 0
.text

28

.global aes_cbc

.type aes_cbc, @function

##REGISTER DEFINITIONS##
.set Rin_dat, 3 # 1st param = ptr to block
.set Rin_key, 4 # 2nd param = ptr to keys
.set Rin_nb, 5 # 3rd param = number of blocks
.set Rin_nr, 6 # 4th param = number of rounds
.set Rin_iv, 7 # 5th param = counter initial value
.set Rround, 10 # Round counter
.set Rroundkey, 11 #
.set Riv, 12 # IV = Initial Value
.set Rstate, 13 # block State
.set Ridx, 14 #
.set Rblock, 15 # block counter
.set Rbit5, 16 #
.set Rbit6, 17 #
.set Rbit7, 18 #
.set Rsbox01, 19 #
.set Rsbox23, 20 #
.set Rsbox45, 21 #
.set Rsbox67, 22 #
.set Rsbox89, 23 #
.set RsboxAB, 24 #
.set RsboxCD, 25 #
.set RsboxEF, 26 #
.set Rsbox03, 27 #
.set Rsbox47, 28 #
.set Rsbox8B, 29 #
.set RsboxCF, 30 #
.set Rsbox07, 31 #
.set Rsbox8F, 32 #
.set Rshiftrows, 33 #
.set Rshiftrow1, 34 #
.set Rshiftrow2, 35 #
.set Rshiftrow3, 36 #
.set Rrow0, 37 #
.set Rrow1, 38 #
.set Rrow2, 39 #
.set Rrow3, 40 #
.set Rrow01, 41 #
.set Rtimes2, 42 #
.set Rtimes2m, 43 #
.set Rblockout, 44 # block counter copy
.set Rnextdat, 45 # block counter copy
.set Rhint, 46 # branch hint
.set Rhints, 47 # branch hint table
.set Rroundkey0, 57 #
.set Rdatablk, 58 #
.set Rnrounds, 59 # # of Rounds
.set Rdat, 61 # 1st param = ptr to block
.set Rroundkeys, 62 # Keys Ptr (const)
.set Rsbox0, 64 # S-box Table (const)
.set Rsbox1, 65 # S-box Table (const)

29

.set Rsbox2, 66 # S-box Table (const)

.set Rsbox3, 67 # S-box Table (const)

.set Rsbox4, 68 # S-box Table (const)

.set Rsbox5, 69 # S-box Table (const)

.set Rsbox6, 70 # S-box Table (const)

.set Rsbox7, 71 # S-box Table (const)

.set Rsbox8, 72 # S-box Table (const)

.set Rsbox9, 73 # S-box Table (const)

.set RsboxA, 74 # S-box Table (const)

.set RsboxB, 75 # S-box Table (const)

.set RsboxC, 76 # S-box Table (const)

.set RsboxD, 77 # S-box Table (const)

.set RsboxE, 78 # S-box Table (const)

.set RsboxF, 79 # S-box Table (const)

.align 3
aes_cbc:
setup so round reg counts up to zero from neg.
then adjust pointer to roundkeys so sum points to round key
use similar count-up with block counter
load tables into registers and do Round #0 for first block{ shli $Rnrounds, $Rin_nr, 4 # #rounds*16

lqr $Rsbox7, Sbox+0x70{ shli $Rblock, $Rin_nb, 4 # #blocks*16
lqr $Rsbox0, Sbox+0x00{ ori $Rdat, $Rin_dat, 0 # move data pointer
lqr $Rsbox1, Sbox+0x10{ ori $Rstate, $Rin_iv, 0 # move IV to State
lqr $Rsbox2, Sbox+0x20{ sfi $Rnrounds, $Rnrounds, 0x10 # neg. of (#rounds-1)*16 to addr QW
lqr $Rsbox3, Sbox+0x30{ sfi $Rblock, $Rblock, 0 # neg. of (#blocks)*16 to addr QW
lqr $Rsbox4, Sbox+0x40{ sf $Rroundkeys, $Rnrounds, $Rin_key # offset: roundkeys+round -> round key
lqr $Rsbox5, Sbox+0x50{ sf $Rdat, $Rblock, $Rdat # offset: dataptr+block -> data
lqr $Rsbox6, Sbox+0x60{ ori $Rround, $Rnrounds, 0 # initialize round counter
lqx $Rroundkey0, $Rroundkeys, $Rnrounds # get round key #0{ ai $Rnextdat, $Rdat, 0x10 # data ptr for next round (*16)
lqx $Rdatablk, $Rdat, $Rblock # get first block of data{ ila $Rhints, BranchHints
lqr $Rsbox8, Sbox+0x80{ ila $Ridx, Lroundloop_end + 4 # address not to loop
lqr $Rsbox9, Sbox+0x90{ sf $Rhints, $Rnrounds, $Rhints # offset: hints+round -> round hint
lqr $RsboxA, Sbox+0xA0{ ila $Rhint, Lroundloop
lqr $RsboxB, Sbox+0xB0
lqr $RsboxC, Sbox+0xC0
lqr $Rshiftrow1, ShiftRows+0x10{ xor $Rstate, $Rstate, $Rdatablk # add data to current state
lqr $RsboxD, Sbox+0xD0
lqr $RsboxE, Sbox+0xE0

30

lqr $RsboxF, Sbox+0xF0{ xor $Rstate, $Rstate, $Rroundkey0 # add round key 0 to state
lqr $Rshiftrows, ShiftRows
lqr $Rshiftrow2, ShiftRows+0x20
lqr $Rshiftrow3, ShiftRows+0x30

Lhinttabloop:
stqx $Rhint, $Rhints, $Rround # put hint for each round

ai $Rround, $Rround, 0x10 # next round (*16)
brnz $Rround, Lhinttabloop # branch if not last round
stqx $Rhint, $Rhints, $Rround # put hint for next round loop
stqd $Ridx, -16($Rhints) # store hint not to loop

ori $Rround, $Rnrounds, 0 # initialize round counter
.align 3

Lroundloop: # also top of Block Loop
SIMD version of S-box{ andbi $Ridx, $Rstate, 0x1F # lower 5 bits for partial lookup

lnop{ ai $Rround, $Rround, 0x10 # next round (*16)
hbr Lroundloop_end, $Rhint # hint for round loop{ andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)
shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000{ andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001{ ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010{ ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011{ clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100{ selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101{ nop
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110{ selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111{ selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
lqx $Rroundkey, $Rroundkeys, $Rround # get round key{ selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11
lqx $Rhint, $Rhints, $Rround # get hint for next round

selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1
selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup

SIMD version of shift rows
shufb $Rrow1, $Rstate, $Rstate, $Rshiftrow1 # move bytes: row 1
shufb $Rrow0, $Rstate, $Rstate, $Rshiftrows # move bytes around: row 0
shufb $Rrow2, $Rstate, $Rstate, $Rshiftrow2 # move bytes: row 2
shufb $Rrow3, $Rstate, $Rstate, $Rshiftrow3 # move bytes: row 3

SIMD version of Mix Columns and Add Round Key
xor $Rstate, $Rrow1, $Rroundkey # 1 + RK
xor $Rrow01, $Rrow0, $Rrow1 # 0+1
xor $Rstate, $Rstate, $Rrow2 # 1+2 + RK

.align 3{ clgtbi $Rbit7, $Rrow01, 0x7F # if msb = 1
shlqbii $Rtimes2, $Rrow01, 1 # shift block 1 bit

31

xor $Rstate, $Rstate, $Rrow3 # 1+2+3 + RK
xorbi $Rtimes2m, $Rstate, 0x1B # mod field polynomial
andbi $Rtimes2, $Rtimes2, 0xFE # clear lsb
selb $Rstate, $Rstate, $Rtimes2m, $Rbit7 # now 1+2+3+RK mod poly

.align 3 # not really nec. here{ xor $Rstate, $Rstate, $Rtimes2 # 2*(0+1) + 1+2+3 + RK, done
Lroundloop_end:

brnz $Rround, Lroundloop # branch if not last round
LAST ROUND
SIMD version of S-box

.align 3{ andbi $Ridx, $Rstate, 0x1F # lower 5 bits for partial lookup
hbrr Lblockloop_end, Lroundloop # hint for block loop{ ori $Rblockout, $Rblock, 0 # copy block # for output
lqx $Rdatablk, $Rnextdat, $Rblock # get next block of data{ andbi $Rbit5, $Rstate, 0x20 # get next bit (#5)
shufb $Rsbox01, $Rsbox0, $Rsbox1, $Ridx # partial lookup if 3 msb = 000{ andbi $Rbit6, $Rstate, 0x40 # get next bit (#6)
shufb $Rsbox23, $Rsbox2, $Rsbox3, $Ridx # partial lookup if 3 msb = 001{ ceqbi $Rbit5, $Rbit5, 0x20 # form bytewise selector
shufb $Rsbox45, $Rsbox4, $Rsbox5, $Ridx # partial lookup if 3 msb = 010{ ceqbi $Rbit6, $Rbit6, 0x40 # form bytewise selector
shufb $Rsbox67, $Rsbox6, $Rsbox7, $Ridx # partial lookup if 3 msb = 011{ clgtbi $Rbit7, $Rstate, 0x7F # form selector based on msb (#7)
shufb $Rsbox89, $Rsbox8, $Rsbox9, $Ridx # partial lookup if 3 msb = 100{ selb $Rsbox03, $Rsbox01, $Rsbox23, $Rbit5 # partial lookup if 2 msb = 00
shufb $RsboxAB, $RsboxA, $RsboxB, $Ridx # partial lookup if 3 msb = 101{ ai $Rblock, $Rblock, 0x10 # next block
shufb $RsboxCD, $RsboxC, $RsboxD, $Ridx # partial lookup if 3 msb = 110{ selb $Rsbox47, $Rsbox45, $Rsbox67, $Rbit5 # partial lookup if 2 msb = 01
shufb $RsboxEF, $RsboxE, $RsboxF, $Ridx # partial lookup if 3 msb = 111{ selb $Rsbox8B, $Rsbox89, $RsboxAB, $Rbit5 # partial lookup if 2 msb = 10
lqd $Rroundkey, 0x10($Rroundkeys) # get round key{ selb $RsboxCF, $RsboxCD, $RsboxEF, $Rbit5 # partial lookup if 2 msb = 11
shlqbyi $Rround, $Rnrounds, 0 # initialize round counter

selb $Rsbox07, $Rsbox03, $Rsbox47, $Rbit6 # partial lookup if 1 msb = 0
selb $Rsbox8F, $Rsbox8B, $RsboxCF, $Rbit6 # partial lookup if 1 msb = 1
selb $Rstate, $Rsbox07, $Rsbox8F, $Rbit7 # finish table lookup

.align 3
SIMD version of shift rows
xor $Rdatablk, $Rdatablk, $Rroundkey0 # add round key 0 to next data

shufb $Rstate, $Rstate, $Rstate, $Rshiftrows # move bytes around
SIMD version of Add Round Key
xor $Rstate, $Rstate, $Rroundkey # add round key to state

use similar count-up with block counter
stqx $Rstate, $Rdat, $Rblockout # overwrite block of data{ xor $Rstate, $Rstate, $Rdatablk # add data+RK0 to current state

Lblockloop_end:
brnz $Rblock, Lroundloop # branch if not last block
bi $lr # return
.ident "DRC"

32

 3

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. George Dinolt
Naval Postgraduate School
Monterey, California

4. David Canright, Code MA/Ca (5)
Naval Postgraduate School
Monterey, California

5. Simson Garfinkel
Naval Postgraduate School
Monterey, California

6. Bruce Allen
Naval Postgraduate School
Monterey, California

