
International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

This article presents improvements in the Advanced Forensics Format Library version 3 that provide for
digital signatures and other cryptographic protections for digital evidence, allowing an investigator to
establish a reliable chain-of-custody for electronic evidence from the crime scene to the court room. No
other system for handling and storing electronic evidence currently provides such capabilities. This article
discusses implementation details, user level commands, and the AFFLIB programmer’s API.

Keywords:	 AFF; AFFLIB; AImage, Advanced Disk Imager; disk imaging; EnCase

Introduction

Chain-of-custody for evidence from the crime
scene to the court room is a bedrock principle
of both civil and criminal law. Without a clear
and unambiguous chain-of-custody there is no
way to be sure that an object presented to the
court is the same object that was collected at the
scene of the crime. Even evidence presented to
technical experts needs to have chain-of-cus-
tody: without it, there is no way to assure that
the expert’s testimony pertains to evidence from
the actual case that is under consideration.

A paper notebook found at a crime scene
can be put into an evidence bag, tagged, and

locked away in an evidence locker. Each time
the evidence is accessed or moved to another
location this fact will be noted. In this manner
the prosecution can show that the evidence
has not been tampered; in the rare cases where
tampering takes place, it can be detected.

But unlike records written with pen and
paper, digital files can be modified without leav-
ing a trace of the original message. This is one
of the great challenges of digital forensics—es-
tablishing that a particular arrangement of bits
on a digital storage medium is the result of on
specific computational history (e.g., deleting a
file) and not of another (e.g., using a hex editor
to write raw sectors onto the disk drive that are
indicative of a deleted file)[Carrier, 2006].

Providing Cryptographic
Security and Evidentiary

Chain-of-Custody with the
Advanced Forensic Format,

Library, and Tools1

Simson L. Garfinkel, Naval Postgraduate School and Harvard University, USA

� International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Of course, hard drives, USB memory sticks,
and cell phones are tagged and bagged. But at
some point, the information on these devices
needs to be copied onto another computer system
for analysis. In a modern forensic laboratory
these files might be placed on a high-capacity
server or a Storage Area Network (SAN) to
allow for flexible use and simultaneous access
by multiple examiners. Such environments
require highly reliable technical measures to
provide assurances that evidence is kept intact
and unmodified.

Although computer forensics practitioners
understand the importance of chain-of-custody,
today’s tools for preserving this chain are poor.
Programs such as EnCase[Keightley, 2003] and
dcfldd[Harbour, 2006] will compute an MD5
or SHA-1 cryptographic hash of a disk when
it is copied by an investigator into an image
file. Later, when the image file is provided to a
forensic analyst, the analyst can compare the
hash of the image received with the hash of the
original to determine if the file has been modi-
fied. If the hashes match, the assumption is that
the file is unchanged from the original.

This article introduces an improved method
for assuring the integrity of digital evidence
that is based on public key cryptography. In
addition to providing improved integrity, the
method presented also allows for:

•	 digital documentation of evidentiary trans-
fer from one agent to another;

•	 reconstruction of evidence that has been
inadvertently damaged during transfer;

•	 forensically sound methods for recovering
partial evidence in cases where so much
digital evidence has been damaged that
reconstruction is no longer possible;

•	 encryption with both symmetric and public
key cryptography, so that evidence that is
acquired in a hostile environment can be
safely transferred back to a secure facil-
ity.

These new methods have been implement-
ed in the Advanced Forensic Format Library
(AFFLIB) Version 3[Garfinkel, 2008]. AFFLIB

is an open source software package written in
the C/C++ programming language that allows
for the imaging, manipulation, storage and use
of digital evidence. The software is available
free of charge for incorporation into both open
source and proprietary forensic applications.

Background and Prior
Work

Disks and Disk Images

Computer hard drives, optical drives, and
solid state drives are mass storage devices that
organize the information they store as a series
of numbered, fix-sized sectors. Traditionally
hard drives employ a sector size of 512 bytes
and CDROM drives used 2048-byte sectors,
although a standard for 4096-byte sectors is
currently under development[Fonseca, 2007].

A disk image file, or more generally an im-
age file, is a file that contains a sector-for-sector
copy of the contents of a mass storage device.
Image files are intended to be perfect copies of
the disk’s contents. Image files are produced
with programs called imagers.2

Although the discussion to this point has
focused on disk image files, in practice any data
carrying device can be imaged. Once a device
is imaged, the forensic investigator works with
the image, rather than the original device, in
order to preserve the device’s integrity: most
computer forensic tools can directly read and
process disk image files.

Image files are particularly important when
it is necessary to record the state of a device that
must then be returned to service—for example,
in the event of a network attack. In these cases,
the image file may be the only tangible evidence
of the crime that has taken place after the system
has been restored to operation.

Imaging also provides a simple and oper-
ating system independent means for backing
up a hard drive: the drive is simply imaged
into a file or onto another drive. To restore the
backup, the image is restored on the original

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

drive. The image can also be restored on an-
other drive of similar size, a process sometimes
called cloning.

Disk image files can be stored in different
formats. The most basic format is the raw for-
mat in which the bytes in the image file have a
one-for-one correspondence to the bytes on the
physical device (e.g., bytes 0–511 in the file rep-
resent the first 512-byte sector, bytes 512–1023
represent the second 512-byte sector, and so
on). The advantage of the raw format is that it
is easy to understand and easy to implement;
the disadvantage is that raw files consume as
much storage space as the device being imaged:
imaging a newly purchased 80GB hard drive
will produce an 80GB raw file, even though
each one of the drive’s 160 million 512-byte
disk sectors is filled with ASCII NULLs.

Disk Image Formats

There are two important shortcomings that
forensic examiners experience when working
with raw disk images: the images are unwieldy,
and they do not capture important information
such as the time that the disk was imaged, who
performed the imaging, or even the device sector
size. Because of these shortcomings, developers
have created a number of disk image formats,
each with its own intended purpose.

One of the most widely used file formats
today is the EnCase Evidence File Format. This
format is based on the ASR Data Expert Wit-
ness Compression Format [ASR, 2002]. Disk
images are stored as a series of files, each file
not exceeding 2GB (2−1=2147483647 bytes).
The first file contains a “Case Info” header, a
table containing a 32-bit CRC and the offset
of each “blocks” in the disk image (the default
block size is 64 sectors), and a footer containing
an MD5 hash for the entire physical disk. Also
contained in the header are the date and time
of acquisition, an examiner’s name, notes on
the acquisition, and an optional password; the
header concludes with its own CRC. Images
that require more than 2GB of storage are split
into multiple files and given file names such
as FILE.E01, FILE.E02, etc. Disk images can

be split into files smaller than 2GB for storage
to archival CDROM. The EnCase/Expert Wit-
ness file format can be read by a number of
commercial programs and by the Open Source
Libewf[Kloet et al., 2008].

Other forensic file formats include a
proprietary format used by AccessData’s Fo-
rensic Toolkit (FTK), the file format used by
Safeback[NTI Forensics Source, 2008], and the
file format used by ILook Investigator[US Trea-
sury, 2008]. A detailed survey of forensic file
formats appears in [Garfinkel et al., 2006].

In almost all cases it is faster to perform a
forensic investigation with a an uncompressed
raw file than it is to work with a compressed
file. This is because modern forensic programs
frequently need to skip from one part of a disk
image to another: when a compressed format
is used, parts of the disk image are constantly
being read off the disk, decompressed, and
then discarded. Using an uncompressed for-
mat avoids the decompression step, which is
computationally intensive.

Assuring Integrity with Hash
Functions

Forensic practitioners today largely rely on
the MD5[Rivest, 1992] and SHA-1[Computer
Systems Laboratory and Technology, 1993]
cryptographic hash functions to assure the
integrity of images that they acquire.

A cryptographic hash is a one-way function
which takes an arbitrary amount of input and
produces an output of a fixed size. (Cryptogra-
phers will sometimes call the input a pre-image
and refer to the hash value as the residue.) To
be considered strong, a cryptographic hash
function should have these properties:

•	 Preimage resistance: Given any hash, it
should be computationally infeasible to
find a specific preimage that produces the
residue.

•	 Second preimage resistance: Given a
message m311, it should be computation-
ally infeasible to find a message m2 that
has the same hash.

� International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

•	 Collision resistance: It should be computa-
tionally infeasible to find any two messages
m1 and m2 that have the same hash.[Friedl,
2005, Boneh, 2001]

The MD5 algorithm produces a 128-bit
cryptographic hash; this hash is typically written
as 32 hexadecimal digits. The SHA-1 algorithm
produces a 160-bit hash which is typically writ-
ten as 40 digits.

Today it is common practice for computer
forensic investigators to record the MD5 or
SHA-1 of a disk when it is imaged. The hash is
computed by the acquisition tool as the data is
read from disk being imaged and displayed on
the computer’s screen; the investigator records
this number in the investigative report.

For example, in the case of US v. Zacarias
Moussaoui, when the contents of Moussaoui’s
laptop were duplicated by the FBI with Safe-
back, a program was used to compute the MD5
of both the laptop’s drive and the copy made by
the FBI. A copy of the laptop’s drive was then
provided to Mr. Moussaoui’s defense team. The
MD5 of this copy was computed and compared
with the MD5 of the original laptop’s drive.
According to court filings:

 “The significance of this point is two-fold.
First, there can be no question that the defense
has the exact same copy of the original that the
Government has, so they can conduct any further
investigation on their copy that they wish. Sec-
ond, the results of the MD5 program as to these
two laptops further demonstrate the reliability
of the Safeback program.”[Novak, 2002]

There are several advantages to the current
practice of manually recording hash codes and
incorporating them into investigative reports:

•	 The practice is easy to understand.
•	 The practice is in general use.
•	 The practice is easy to explain in court.
•	 The hash codes are easily recorded in an

investigative report which the investigator
is presumably already keeping for other
purposes.

•	 The same procedures which assure for
integrity of the investigative report will

similarly assure for the integrity of the
hash codes.

But today’s practice has potential problems
as well:

•	 Because the hash codes are recorded in
what is essentially a free-format report
narrative, it is difficult to apply automated
processing and validation.

•	 If the disk image becomes corrupted, the
hash code will only report that it no longer
matches: it does not allow the error to be
isolated or corrected.

MD5 Vulnerabilities

In recent years a number of vulnerabilities have
been found in the MD5 hashing algorithm, cul-
minating with the discovery of MD5 collisions
[Wang et al., 2004]. For this reason MD5 is no
longer considered by computer scientists to be
a good choice for security-critical applications.
Although as of this writing no SHA-1 collisions
have been publicly announced, many research-
ers feel that it is only a matter of time [Schneier,
2004]. Increasingly security software uses the
SHA-256 algorithm, which produces a 256-bit
hash, and NIST has started an effort to develop
a new hash standard [NIST, 2007].

There are at least two reasons that the dis-
covery of MD5 collisions was not as catastrophic
for computer security in practice as they might
otherwise have been:

•	 First, although it is possible to generate
MD5 collisions, it still takes a considerable
amount of computer power and expertise
to do so.

•	 A second and perhaps more important
reason is that modern security engineering
practice is to use a plug-in architecture for
cryptographic algorithms. To be “plug-
gable” formats must store version numbers,
algorithm names and key lengths in data
that transmitted or stored. The practical
result of this engineering practice is that
most programs that employ hash functions

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

can work with a wide range of algorithm.
Software that relies on cryptographic
hashes can then validate using any or all of
these algorithms, dramatically reducing the
chances that an attack will be successful.

Piecewise Hashing

In addition to computing a hash of the entire
disk image, some tools will compute a hash
for individual sections or “pieces” of the im-
age. For example, dcfldd [Harbour, 2006]
can compute a hash for each block and store
the hashes in a separate file. This approach of
separately hashing each piece of the file is called
piecewise hashing.

Piecewise hashing is an important advance
for digital forensics. Whereas a single hash code
for an image can establish that an image has not
been modified, if the file is modified the piece-
wise hashes can be used to help determine the
location and extent of the alternation. Changing
a single bit from a 0 to a 1 will change the hash
for the entire image, but it will only change one
of the piecewise hashes. In such a case, the
remaining pieces would still have evidentiary
value. Even if a file is truncated—for example,
an 80GB file cut into a 20GB file—the piecewise
hashes will allow the remaining evidence to be
used, as long as it is otherwise unaltered.

Digital Signatures for Data
Integrity

Digital signatures were invented by Diffie
and Hellman for the purpose of securing
mail sent over digital networks such as the
Internet[Diffie and Hellman, 1976]. Digital
signatures in the form of digital certificates
have been applied for the purpose of certifying
cryptographic keys[Kohnfelder, 1978], and now
provide authentication for the vast majority
of encrypted communications on the Internet
through their incorporation into the SSL and
TLS protocols[Dierks and Allen, 1999]. Digital
signatures have also been widely applied to
code signing in the Windows and Macintosh
operating systems, as well as signing Linux

software updates. But prior to the work pre-
sented in this article, digital signatures have
not been applied to imaging of digital media
for forensic purposes.

Modern digital signatures are implemented
as functional compositions of cryptographic
hash functions and public key cryptography.
In practice a document that is to be signed is
hashed with a function such as SHA-1. The
hash is then encrypted using an asymmetric
encryption algorithm such as RSA[Rivest et
al., 1977].

Asymmetric encryption algorithms have
the property that data encrypted with an en-
cryption key can only be decrypted with a
matching decryption key. In practice one key
is kept confidential (the private key) while the
other key is disclosed (the public key). When
used for digital signatures, the private key is
used to sign the signature while the public key
is used to validate to signature.

Verifying a digital signature accomplishes
two purposes: it verifies that the digital docu-
ment has not been modified, and it verifies that
a particular private key was used to create the
signature. Verification is typically performed
in three steps. First, the document’s hash func-
tion is computed for a second time. Next, the
signature is decrypted with the signer’s public
key. Finally, the computed hash is compared
with the decrypted hash: if they match, the
signature verifies.

Hash Functions Alone are not
Digital Signatures

It is important for forensic practitioners to
understand that what gives the digital signa-
ture its security is the use of a private key to
mathematically sign the cryptographic hash:
a cryptographic hash by itself is not a digital
signature.

This is an important distinction, because the
terms “digital signature” and “forensic signa-
ture” are frequently—and incorrectly—used by
forensics practitioners in reference to a simple
cryptographic hash (see [Haggerty and Taylor,
2007, ICS, 2008]). A hash value by itself is not

� International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

a signature, because it is not based on any secret
information: anyone in possession of the data
can generate the hash; thus, having the hash is
not proof that a specific person or system had
posession of the data.

True digital signatures are important for
establishing chain-of-custody because of their
non-repudiability properties. If the signer’s
private key has not been compromised and if
the signature is valid, then the private key was
used to create the signature3. One can easily
imagine a future in which digital evidence is
routinely signed using trusted hardware such
as a US Department of Defense Common Ac-
cess Card[US Department of Defense, 2008].
Such a signature provides not such an assurance
that the evidence has not been tampered—it
provides an electronic proof that a specific
person (or, at least, a specific CAC) was used
to sign the evidence when it was acquired.
Other information such as GPS coordinates or
a secure timestamp[Adams et al., 2001] could
be included in the signature as well.

AFF and AFFLIB 3

The Advanced Forensic Format (AFF) is a
format for storing digital evidence and associ-
ated metadata. Similar to the Expert Witness
Format, AFF stores digital information as a
series of blocks, range in size from 512 bytes
to 4GB, which can be optionally compressed
and stored in one or more disk files. Unlike
Expert Witness, AFF is an extensible format
which can store any kind of arbitrary data or
metadata. To this end, AFF can be thought of
as two parts: a container file format, similar to
the ZIP file format, and a schema for mapping
digital evidence to specific name/value pairs.
A detailed description of the disk representa-
tion for the AFF format has been previously
published[Garfinkel et al., 2006].

AFFLIBTM is an implementation of AFF
written in a portable C++ that can be called
from either C or C++. Rather than forcing
the programmer to understand segments, data
segments, compression and so on, AFFLIB

implements a simple abstraction that makes
the AFF image file appear as two resources: a
simple name/value database that can be accessed
with traditional put and get semantics; and a
stream that can be accessed using af_open(),
af_read(), and af_seek() function calls.
If af_open() is used to open a non-AFF file,
the library defaults to a pass-through mode of
operation, allowing AFF-aware programs to
work equally well with raw files. In this manner,
it is easy to modify existing forensics software
to work with AFF yet retain compatibility with
raw files.

AFF Design

Specific goals for AFF are presented in [Gar-
finkel et al., 2006] and repeated in Figure 1 .
AFF accomplishes these goals by partitioning
the format into two layers: a data storage layer,
which specifies how the named AFF segments
are stored in an actual file, and a data schema
layer, which defines how the information stored
in the named segments is to be interpreted.

AFF Data Storage Layer

The AFF data storage layer stores any number
of name/value pairs within a single AFF object.
AFF calls these name/value pairs segments.
The segment name consists of a Unicode
string between 1 and 64 characters long; the
value consists of a 32-bit unsigned integer
and a sequence of between 0 and 2−1 bytes.
As discussed below in Section 3.3 , different
names are used to store different kinds of data
and metadata.

When AFF is used to store disk images,
the pagesize segment stores the size of each
section of the disk image, the name page0 is
used to store the first section, page1 is used
to store the second, and so on. As the name
implies, these sections of the disk image are
called pages. By default AFF uses pages that
are 16MB (2) bytes in length, although this
can be changed on a file-by-file basis when the
image file is created.

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AFFLIB Version 3 was released in the fall
of 2007 and has been steadily improved since.
AFFLIB 3 includes supports for five different
data storage layers:

•	 AFF: A disk image in a single file. The
AFF file format stores AFF segments in a
single file that consists of a file header, one
or more AFF segments, and a file footer. The
format is designed to allow easy parsing
and validation of AFF files and easy data
recovery in the event of media failure.

Unlike the Expert Witness format, the AFF
format store an entire disk image and associated
metadata in a single file. This is designed to aid
processing and ease-of-use in environments that
work with dozens or even thousands of drives
simultaneously. As a result, we could not use
an existing archive format such as ZIP or JAR
because neither supported files larger than 4GB
due to the use of 32-bit offsets within the file
directory. Likewise, we couldn’t use compressed
tar files because they do not provide for random
access. In retrospect we could have used the
ZIP64 format, but at the time we did not have
an implementation of ZIP64 that was both clean
and Open Source.

When an application asks AFFLIB to open
an AFF file with the af_open() call, AFFLIB
scans the entire file, noting the offset of each

segment, and builds an in-memory table of
contents with this information. Offsets stored
within each segment allows the file to be read
quickly, without necessitating the reading of
each byte in the file. Although it would be pos-
sible to store the table of contents at the end of
the file, the way the ZIP file format does, we
decided to force a trip through the segment head-
ers within the file as a way of quickly verifying
the file’s integrity. Offsets stored within the file
allow reading only the segment headers, rather
than forcing a read of the entire file contents.
In practice this process takes between 10 and
30 seconds on a modern desktop system for
image files of devices ranging from 10GB to
200GB. Modern operating systems cache disk
sectors, so once a file is opened, subsequent
file openings are nearly instantaneous as long
as these sectors remain in the host operating
system’s cache.

•	 AFD: Multiple AFF files in a single di-
rectory. Despite the fact that the AFF file
format supports files larger than 4GB, some
file systems (e.g., MSDOS) do not support
files larger than 2GB. On these systems
AFFLIB supports an alternative storage
mode called AFD, in which multiple AFF
files are stored in a single directory. When
a directory ending in the extension .afd
is passed to AFFLIB’s af_open() routine,

Figure 1. AFF Design Goals, from [Garfinkel et al., 2006]

•	 Ability to store:
•	 disk images with or without compression.
•	 disk images of any size.
•	 metadata within disk images or separately.
•	 images in a single file of any size or split among multiple files.
•	 Arbitrary metadata in the form of user-defined name/value pairs.

•	 Extensibility.
•	 Simple design.
•	 Multi-platform, open source implementation.
•	 Freedom from any intellectual property restrictions.
•	 Provisions for internal self-consistency checking, so that part of an image could be recovered

even if other parts of the image were rendered corrupt or otherwise lost.
•	 Provisions for certifying the authenticity of evidence files both with traditional hash functions

like MD5 and SHA-1 and with advanced digital signatures based on X.509(v)3 certificates.

� International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

AFFLIB scans the directory for .aff files
and builds a single table of contents for
all of the files. The maximum size of each
AFF file within the AFD directory can be
specified as an option.

•	 AFM: Raw files with AFF annotations. A
single AFF file can be used to store metadata
or other annotations (for example, digital
signatures) for a disk image that is stored
in one or more raw files. In this case the
file is given an AFM extension.

	 For example, if a disk image is stored
in three files, file.000, file.001 and
file.002, annotations can be stored in a
file called file.afm. Opening the file.
afm file with AFFLIB causes the library
to automatically locate and reference the
data in the raw files when the forensic ap-
plication attempts to read file data.

•	 RAW and Split-Raw: Support for raw
files. The AFFLIB library can also directly
open raw or split-raw files if their file names
are passed to the af_open() call.

•	 S3: Storing on Amazon’s Simple Storage
Service. For supporting grid computing
applications using Amazon’s EC2, AF-
FLIB has the ability to directly store disk
images inside Amazon’s Simple Storage
Service[Amazon, 2008].

•	 Libewf: Legacy support for EnCase.
Finally, LIBAFF can directly read disk
images created in the Guidance Software
EnCase file format using libewf[Kloet et
al., 2008].

The AFFLIB af_open() determines which
storage layer implementation to use based on the
string pathname argument that it is provided.
For example, an attempt to open or create a file
which has an extension of .aff results in an AFF
file being opened or created; opening a directory
with a .afd extension results in the directory
being treated as a collection of AFF files; calling
af_open() with a path that has an an extension
of .afd and the O_CREAT flag results in a direc-
tory being created. S3 files are specified with
a URI in the form s3://bucketname/prefix.
Split-raw files are automatically detected when

a file is opened with a .000 extension and a file
is present with the same basename and a .001
extension. EnCase files are specified with the
standard .E01 extension.

AFF Schema

The AFF schema defines specific segment
names, their purposes, and the interpretation of
the 32-bit flag and variable-length data areas. A
list of the segments that have been defined as
of AFFLIB v3.0.6 appears in Table 1 . Because
of the open nature of AFF, applications are able
to create their own named segment and store
that information in the AFF file.

Some of the more important AFF segments
appear in Table 1 .

Additional segment types used for integ-
rity and privacy will be discussed later in this
article.

AFFLIB Streams Layer

In order to facilitate the integration of AFF into
existing and new forensic software, AFFLIB
implements a streams layer which provides
a standard POSIX-like streams abstraction
through a standard set of interfaces (Table 2).

Transparent Integration with
AFUSE

Although support for AFF is relatively easy to
add to an existing program by replacing calls
to open(), read() and with seek() with
af_open(), af_read(), and af_seek(), oc-
casionally it is not possible or desired to make
source code modification to forensic tools.

To accommodate these problems AFFLIB
includes a user-level program called affuse.
Implemented on top of the Filesystem in Us-
espace (FUSE)[Szeredi, 2008], affuse allows
a compressed AFF file to appear as a raw file
in the computer’s own file system. FUSE takes
care of automatically decompressing pages as
necessary and caching the uncompressed pages
with all available memory.

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Device Characteristics:

pagesize The size of each AFF page, in bytes

imagesize The number of bytes in the image

sectorsize The size of each sector, in bytes

devicesectors The number of sectors on the device.

Metadata:

case_num Case number; for compatibility with EnCase.

image_gid A randomly generated 128-bit number used to
uniquely identify each acquired image.

Image characteristics:

pagesize Size (in bytes) of each uncompressed AFF data
page is stored in segment “flag” field.

parity0 The parity page; an XOR of all existing pages

imaging_commandline The complete command used to create the image.

imaging_date The date and time when the imaging was started.

imaging_notes Notes made by the forensic examiner when the
imaging was started.

imaging_device The device that was used as the source of the im-
age.

blanksectors The number of sectors that are completely blank

AFF segments that are repeated for each page %d:

page%d
The named sector for each page of the disk image;
%d is replaced with the page number, from 0 to
devicesectors¸ pagesizesectors.

page%d_md5 The segment for the MD5 hash of the page

page%d_sha1 The segment for the SHA-1 hash of the page

page%d_sha256 The segment for the SHA256 hash of the page

Bad Sector Management:

badsectors The number of sectors in the image which could
not be read due to a hardware failure

Table 1. Some of the segment names used in the AFFLIB 3 schema

AFFLIB POSIX-like functions

af_open Opens an AFF/AFD/AFM/Encase/S3/raw/split
raw file

af_reopen Opens an existing file handle for reading or writ-
ing using the AFFLIB system

af_popen Opens a process for reading or writing using the
AFFLIB system

af_read Read bytes from the file

Table 2. The AFF streams layer

continued on following page

10 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

For example, if the user has an AFF file
called evidence.aff, this can be made to ap-
pear as a raw file in the same file system with
these commands:

ls -l evidence.aff
-rw-r--r-- 1 simsong 555 409039930

Mar 23 2006 evidence.aff
affuse evidence.aff evidenceraw
ls -ld evidence*
-rw-r--r-- 1 simsong 555 409039930

Mar 23 2006 evidence.aff
drwxr-xr-x 2 root root 0

Dec 31 1969 evidence.raw
ls -l evidence.raw
total 0
-r--r--r-- 1 root root 2111864832 Dec

31 1969 evidence.aff.raw

Notice that the current FUSE implementa-
tion reports that the raw file occupies 0 blocks
and has a time stamp of the Unix Epoc. A future
version of affuse will make all of the named
segments inside the AFF file visible in their
own named files.

With affuse, any Linux forensics tool
can access not only AFF files, but also EnCase
files and files stored on S3. Windows can be
run on the same workstation using VMWare
Player[VMWare, 2008]. VMWare Player can
be configured to allow the Windows operating
system (and therefore Windows applications)
to view the host computer’s file system; with
affuse, that file system can include the contents
of an AFF evidence file.

AFFLIB 3 Integrity
Features

AFFLIB 3 includes four important mechanisms
for assuring the integrity.

1.	 Picewise hashing of image pages
2.	 Digital signatures of pages and all meta-

data
3.	 Parity pages
4.	 Chain-of-custody segments

Table 2. continued

af_seek Seek to a different position in the disk image file

af_tell Reports the current position in the disk image file

af_eof Reports if the file pointer is at the end of the file

af_write Write bytes to the file (used when imaging, not
when performing forensic analysis)

af_close Closes an AFF file

Nonstandard extensions:

af_is_badsec-
tor Reports if the specified sector is bad

af_set_error_
reporter

Establishes a callback function for alerting the op-
erator that is called when AFF encounters an error

af_set_cache-
size Sets the size of the AFF page cache

af_vstat Returns status information about the AFF imple-
mentation and the opened file

af_stats Returns statistics about an AFF file

af_set_option Sets an implementation option

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The extensible design of the AFF storage
system, allowed each of these features to be add-
ed to the original AFF specification[Garfinkel et
al., 2006] without the need to make changes to
the underlying AFF Data Storage Layer.

Piecewise Hashing of Data Pages

AFF files store image data in special “page”
segments which are typically 16MB in size.
As each page segment is written, AFFLIB
can automatically compute the page’s MD5,
SHA-1, and/or SHA256 hash and write an
associated segment containing the hash value.
The name of the hash page is simply the page
name followed by the string _md5, _sha1
or _sha256. Each hash may be individually
enabled or disabled at runtime. For example,
when SHA-1 piecewise hashing is enabled and
the page page3 is written, AFFLIB computes
that page’s SHA-1 and writes it into a segment
named page3_sha1.

These piecewise hashes are used as a data
integrity checks, similar to the way that the
Expert Witness/EnCase format uses a CRC32.
Even the MD5 is dramatically more secure than
the CRC32. Nevertheless, these hashes are not
intended to provide cryptographic protection
for evidence: for that purpose AFF uses digital
signatures, described below.

Digital Signatures

Digital signatures represent a significant im-
provement for evidence integrity over today’s
standard practice of recording the MD5 or
SHA-1 of an imaged disk in an investigator’s
notebook:

•	 Unlike a hash code written into an
investigator’s report, digital signatures
are mathematical structures created for
the purpose of assuring the integrity of
data: their suitability for this purpose have
been considered for decades and is widely
understood.

•	 By using standard digital signatures, it
is possible to integrate digital electronic

evidence with existing software that al-
ready understands how to process digital
certificates.

•	 Unlike a hash code, which simply protects
the image data, AFF digital signatures
protect the entire disk image, and all of
the associated metadata.

•	 The private key used to sign the signature
can be tied to a specific device or investiga-
tor, allowing the signature to be used for
non-reputability in addition to integrity.

•	 But the most important reason is that the
use of digital signatures will permit the
migration to imaging based on trusted
hardware which can then help to assure
the chain-of-custody of evidence from the
system being imaged to the courtroom.

AFF computes digital signatures for both
metadata and data. When computing signatures
on metadata, the segment name, 32-bit argu-
ment, and metadata value is signed. In the case
of digital signatures computed on image data
(“pages”), the signatures are calculated on the
uncompressed data. As a result, it is possible to
acquire and digitally sign a disk image and then
later compress the image without compromising
the integrity of the digital signatures. Calculat-
ing the signature on the uncompressed data
further assures that the compression algorithm
does not modify the data between compression
and decompression: if the data were modified,
the signature would not validate.

AFFLIB uses OpenSSL to generate and
verify all digital signatures; signatures are
stored in PKCS#7[Laboratories, 1993] format.
Signatures that are stored directly in segments
are stored as raw PKCS #7 objects, while
signatures stored inside or adjacent to XML
blocks are stored as Base64-encoded PKCS
#7 objects.

AFF digital signatures complement the
existing AFF integrity measures. Because the
signature is stored in its own metadata segment,
the signature does not change the content of
the acquired disk image. And because AFM
files can be used to annotate raw images,
AFF signatures can be applied to raw image

12 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

files without modifying the data itself. This
is similar to PGP’s ability to create “detached
signatures,”[Zimmermann, 1995] although it
is more powerful because PGP’s facility can
only detect that an alteration has taken place,
whereas AFF’s signature facility can report
which page has been modified.

Notice that AFF signatures are independent
of the underlying storage system. The signa-
tures can be stored in one file and the data in
another file (as in an AFM file), or in multiple
AFF files (as in an AFD directory). They can
even be stored in the S3 network-based object
storage system.

Signing AFF Segments

AFFLIB 3 allows each AFF segment to be
individually signed. The signatures for these
segments are stored in their own segments which
are included as part of the AFF file.

The data in an AFF segment consists of
three parts: the segment name, the 32-bit flag,
and the segment bytestream. Because the name
and the flag determine how the contents of the
bytestream are interpreted, all three must be
included in the computation of the signature.

AFFLIB 3 actually supports two signature
modes, both of which include these three data
elements. Both sign a hash of the segment data;
the difference is how the hash is computed:

Signature Mode 0. The hash is computed

from the segment name, a NULL byte, the seg-
ment argument (as a 32-bit number in network
byte order), and the segment data.

Signature Mode 1. This mode is reserved
for AFF data pages. The signature is computed
by calculating the hash of the segment name,
five NULL bytes, and the uncompressed page
data.4 In this manner, the signature is computed
over the original data, rather than data that has
been compressed or otherwise processed.

As indicated above, the signatures are writ-
ten into segments themselves, with the segment
name being name/sha256 where name is the
original segment name sha256 is the hash

algorithm used for computing the signature.
This format allows easy migration to signatures
based on SHA512, should the need arise, or
NIST’s future signature algorithm. Indeed,
the AFF signature format allows a single AFF
file to be simultaneously signed with multiple
schemes.

The observant reader will note that since
AFF signatures are themselves stored in seg-
ments, it is possible that signatures themselves
can be signed. While this is certainly a true
observation, it is not a useful one, since the
integrity of a signature is assured when the
signature is validated.

Signing AFF Files with X.509
Certificates

Signatures can be written with either self-
signed certificates or with X.509[ITU, 2005]
certificates that are issued as part of an
organization’s PKI. AFFLIB 3 uses the plug-
gable “EVP” signature support in the OpenSSL
library[OpenSSL, 2008] to compute signatures;
this library includes full support for both RSA
and DSA X.509 certificates with 1024, 2048
or larger keys.

The easiest way to get a private key and
a corresponding X.509 certificate is to make
a self-signed certificate using the openssl
command:

$ openssl req -x509 -newkey rsa:1024
-keyout sign.key -out sign.key
-nodes

Generating a 1024 bit RSA private
key

....................++++++

.......................++++++
writing new private key to ‘sign.

key’

You are about to be asked to enter

information that will be
incorporated
into your certificate request.
What you are about to enter is what is

called a Distinguished Name or
a DN.

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

There are quite a few fields but you
can leave some blank

For some fields there will be a de-
fault value,

If you enter ‘.’, the field will be
left blank.

Country Name (2 letter code) [AU]:

US
State or Province Name (full name)

[Some-State]:California
Locality Name (eg, city) []:Mon-

terey
Organization Name (eg, company) [In-

ternet Widgits Pty Ltd]:Naval
Postgraduate School
Organizational Unit Name (eg, section)

[]:Department of Computer
Science
Common Name (eg, YOUR name) []:Simson

L. Garfinkel
Email Address []:slgarfin@nps.edu
$

When this command is run the user is
asked a number of questions; OpenSSL uses
the responses to these questions to build the
CN field of the X.509 signing certificate and
certificate request.

The contents of the certificate can be viewed
with the openssl x509 -text command, as
shown in Figure 2 .

Certification of X.509 Certificates

As an alternative to creating a self-signed
certificate, the practitioner can can create an
RSA private/public key pair, create a certificate
request (CSR), send the CSR to a certificate au-
thority, and use the certificate that the authority
returns. This procedure is the same procedure
that the practitioner would use to obtain an
X.509 key for email or running a secure web
server[Housley and Polk, 2001, Adams and
Lloyd, 2002].

Security for X.509 Private Keys

The openssl command presented in Sec-
tion 4.2.2 places both the RSA private key, the
public key, and the self-signed certificate into

the same file. If the private key is stored without
encryption, then the key file must be protected
if non-repudiation is to be assured. Typically
the contents of this file will be protected with
the computer’s operating system using the
same mechanisms that are used to protect the
computer’s device drivers, operating system,
and the afflib tools themselves: if these tools are
secure, then so is the file containing the private
key, and if these tools can be compromised,
putting a passphrase on the private key adds
little additional protection.

In some situations it is advantageous to
have the private key stored separately from
the operating system—for example, in a cryp-
tographic device such as a smart card (e.g.,
the Department of Defense Common Access
Card[US Department of Defense, 2008]) or a
USB token. Although OpenSSL has support for
these devices, we have not implemented this
functionality at the AFFLIB level due to our
limited development resources. A future version
of AFFLIB can support this functionality if it
is required by AFF users.

Bill of Materials and
Chain-of-Custody

AFFLIB 3 introduces a special XML structure
that contains a list of every AFF segment in
the file, a signature for each segment, a set
of “notes,” and a public key. This structure is
called an “AFF Bill Of Materials” (AFFBOM).
An example of the XML structure appears in
Figure 3 .

When an AFF image is created with aim-
age, afconvert, copied with afcopy, or
signed with afsign, an AFFBOM is created
and signed with the private key belonging to the
person who did the acquisition. This is stored
in a special segment called affbom0.

Of course an individual AFFBOM segment
can be removed from an AFF file; indeed, all of
the signatures can be removed as well. This is
not a shortcoming specific to the AFF signature
scheme: any digital signature scheme suffers
from the shortcoming that signatures can be
stripped and the content can be changed by

14 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

$ openssl x509 -text -in sign.key -noout

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 a3:e1:ef:44:63:04:74:00
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=California, L=Monterey, O=Naval Postgraduate

School,
 OU=Department of Computer Science,
 CN=Simson L. Garfinkel/emailAddress=slgarfin@nps.edu
 Validity
 Not Before: May 17 01:40:13 2008 GMT
 Not After : Jun 16 01:40:13 2008 GMT
 Subject: C=US, ST=California, L=Monterey, O=Naval Postgraduate

School,
 OU=Department of Computer Science,
 CN=Simson L. Garfinkel/emailAddress=slgarfin@nps.edu
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:be:4e:10:cc:e4:ae:76:c2:d1:7c:72:c7:74:32:
 f3:43:04:51:ed:ba:ed:a4:26:4d:46:b8:98:6c:bc:
 28:10:13:7c:7d:20:a7:69:c7:9d:f1:66:4c:d3:b1:
 12:48:fc:07:2d:87:83:f3:e4:0c:c8:64:b2:38:6a:
 4a:18:39:bf:3f:08:ba:37:e1:69:3f:57:0c:06:8a:
 c6:95:9d:f5:4a:62:fd:4d:04:49:f1:f7:23:b0:e3:
 e4:ad:41:a1:4a:64:78:d2:fb:16:3d:22:2f:e1:59:
 0d:47:07:85:1a:e7:aa:fa:3b:61:fe:0f:56:21:48:
 c3:e1:49:c5:ad:32:08:4d:57
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 AE:A6:63:40:52:BF:08:1D:E1:D3:A5:85:75:16:D8:BD:76:71:1E:BB
 X509v3 Authority Key Identifier:
 keyid:AE:A6:63:40:52:BF:08:1D:E1:D3:A5:85:75:16:D8:BD:76:71:1E:

BB
 DirName:/C=US/ST=California/L=Monterey/O=Naval
 Postgraduate School/OU=Department of Computer Science/CN=Simson
 L. Garfinkel/emailAddress=slgarfin@nps.edu
 serial:A3:E1:EF:44:63:04:74:00

 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption
 34:6d:22:50:28:72:3b:e5:4d:fd:99:3f:79:6a:37:e0:75:45:
 fb:df:a5:c8:29:a5:4d:62:3f:58:8a:a6:1a:48:86:83:c7:03:
 d7:59:84:b9:5:67:2b:2b:7a:8a:13:72:ec:82:d0:9a:56:b3:
 fd:a5:8a:7f:c1:68:6a:db:ea:d2:1f:41:b9:ab:23:16:f1:59:
 ca:91:3d:cb:fc:58:08:01:ab:4b:7b:15:c5:c5:7a:fc:a9:e8:
 ea:09:fc:8d:4f:1b:68:a7:e5:34:19:9d:ed:73:46:e5:95:87:
 3e:e2:65:58:0f:a2:66:d3:a5:6f:62:47:78:e8:65:34:30:b4:
 49:9d

Figure 2. The OpenSSL command can be used to decode the contents of a certificate

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 15

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

an adversary. Signatures can be stripped from
signed code, producing code that is unsigned.
Signatures can be removed from S/MIME
signed email messages, producing conventional,
unsigned email message. There is, in principle,
no way to tell the difference between an object
that has had its signature removed from one that
was never signed in the first place. The only way
to know that a signature has been removed is
through the use of policy—for example, a proto-
col that prohibits an organization from releasing
an unsigned data object. But even then, there is
no way to tell the difference between a genuine
data object that was released and later had its
signature stripped, and a fraudulent data object
that was never signed in the first place.

AFF Bill of Materials

When an AFF file is created or copied, an AFF
Bill of Materials can be added. This block is

an XML data structure that includes the date
that it was signed, the certificate used to create
the signature, notes, and an array of elements
that represent each segment in the AFF file. An
example of the schema appears in Figure 3

The segment is called a bill of materials
because it is literally a parts list of all the seg-
ments that make up the specific AFF file. Since
AFF files are segmented and segments can be
added or removed at will, the need exists for
a single structure that lists all of the segments
that need to be present for a file to be complete.
Without the AFFBOM segments could be added,
removed, or changed without detection.

The AFFBOM contains XML elements
for the date that the signature was created, the
program that created the signature, human-
readable notes, and an XML array containing a
cryptographic hash of each AFF segment in the
AFF file. Hashes can be computed in mode 0 or
mode 1, as discussed in Section 4.2.1 . At the

<affbom version=”1”>

<! –Date XML was written:–>
<date type=”ISO 01”>19980708T13:33:11</date>

<! –Base64 encoding of certificate used to sign CCB–>
<program>afcopy</program>

<signingcertificate>

YXNkYXNkZgphZHN…

…s39fjasl3JSFCmYK

</signingcertificate>

<notes>

Human-readable notes from the examiner
</notes>

<! –What follows is an array of elements, one for each AFF segment.–>
<affsegments>

<segmenthash segname=’myname1’ mode=’0’ alg=’sha256’>

base64 encoding of the hash of the named segment
</segmenthash>

…<! –multiple segmenthash segments will be present–>
</affsegments>

</affbom>

7zzW9WJ07RPuTH4G291b6YSW5SUQacD7UGJTiwpA+NgPm6/RRoJwSQcud6RxwkkL

thQrN0poqv8T8U7p8cSiuphrL29oBY9J4okjv1xXTdLoHoaf5Ft6kt+QqeSX4bOB

...

Figure 3. The AFF Bill of Materials (AFFBOM) with signature at end.

16 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

end of the XML structure is stored a Base64-
encoded digital signature of the structure.

What makes it possible to detect change is
not just the fact that there is an AFFBOM, but
the fact that it is digitally signed. Provided that
the private key is guarded and that the signature
process is trusted, a relying party can be assured
that the specific set of segments with the specific
hashes existed in the AFF file at the time the
signature was created.

The XML block is signed using the OpenS-
SL signature routines; the resulting signature
is placed at the end of the XML block as a
base-64 coded PKCS #7 object. Although the
W3C XML-Signature Recommendation[Bartel
et al., 2002] might have been a better choice,
we were unable to find a suitable implementa-
tion, and the complexity of the specification is
such that we did not wish to attempt writing it
ourself. (The W3C reference implementation
contains more than 130 C source files and
requires two additional open source packages
for proper operation.) Our implementation has
the advantage of being small, easy to validate,
and implemented. It would not be difficult to
migrate to XML-Signature if such functionality
is required, however.

Providing a Chain of Custody

Each time a signed AFF file is copied with af-
copy, a new AFFBOM can be created which
includes a new AFFBOM that covers all of the
original segments and all of the previous AF-
FBOMs. In this manner the sequence of signed
bill-of-materials becomes a custody chain,
showing who has copied the image and veri-
fying that no evidentuary segments have been
added, deleted, or modified. These AFFBOMs
are stored in segments named affbom1, af-
fbom2, etc., where the number is incremented
for each copy generation.

The AFFLIB source code contains a dem-
onstration script called test_signing.sh that
creates an evidence file and three X.509 certifi-
cates: one for Mr. Agent, one for Ms. Analyst,
and one for Dr. Librarian, all officials in the

fictional town of Remote, CA. The evidence
file rawevidence.iso is converted into a file
evidence.aff with afconvert and then
signed with afsign using this command:

$ afsign -s agent.pem evidence.aff

The signature can be verified using the
afverify command:

$ afverify evidence.aff

Notice that the afverify command does
not need the user to specify a certificate to use
for verification, because the signing certificate
is embedded in the evidence.aff file. When
the program runs it displays the certificate that
was used for verification, so that the investigator
can verify that the file is still signed with the
correct certificate.

Mr. Agent transfers the evidence to Ms.
Analyst. This is done with the afcopy com-
mand:

$ afcopy -n -s analyst.pem evidence.
aff evidence2.aff

Enter notes. Terminate input with a
‘.’ on a line by itself:

This copy was made by the analyst.
.
Thank you.
Copying evidence.aff --> evidence2.

aff
evidence2.aff: 20017252 bytes trans-

fered in 10.07 seconds. xfer rate:
1.99 MBytes/sec

Notice that the file is automatically signed
because a public/private keypair is provided in
the file analyst.pem. The -n option tells af-
copy to take a note from standard input.

Of course, an AFF file can still be copied
without using the afcopy command. In this case
the file will be copied without a new XMLBOM
segment being added.

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 17

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Verification

Verification is done with the AFFLIB program
afverify. This program opens the requested
AFF file and scans for the affbomn segments.
For each segment the program then verifies
the signature on the XML block, then opens
each AFF segment and verifies that segment’s
cryptographic hash. (Segment hashes are cached
after they are computed for efficiency.)

The afverify program can report:

•	 Missing segments that were signed but are
now missing.

•	 Extra segments that were not signed but
have been added to the file.

•	 AFF segments whose signature no longer
verify.

•	 AFF segments that were modified at one
point during the conveyance of evidence.
These will appear as segments that do not
verify for older AFFBOMs but to verify
for later AFFBOMs. In this manner it is
possible to determine when the segment
was modified.

Figure 4 shows afverify applied to the
file evidence2.aff created in the previous
section.

AFF Parity Pages

To allow for the recovery of data after corruption
or data loss, AFFLIB 3 introduces the concept
of AFF Parity Pages. Similar to parity drives
used in a hard drive storage array, the AFF
parity page is written for each disk image file
at the conclusion of disk imaging; each byte
of the parity page is computed by taking the
XOR of the corresponding byte of all the other
disk pages in the AFF file. Thus, the contents
of any other page can be reconstructed simply
by taking the XOR of all the remaining pages
and the parity page.

AFF parity pages work with piecewise
hashes and digital signatures to provide en-
hanced data recovery. If the hash or digital sig-
nature indicates that a page has been corrupted,

that page can be erased and then reconstructed
using all of the other AFF pages and the par-
ity page. Once reconstruction is complete, the
signature or page hash (which are stored in a
different location) can be used to determine if
the reconstruction is correct.

Parity pages are automatically created when
an image is signed with the afsign utility. They
can also be created by the aimage disk imaging
utility, which was previously part of AFFLIB
but is now its own standalone distribution.

Because they are the same size as the data
pages, parity pages are not limited to correcting
a single error. Indeed, the combination of parity
pages and per-page hashes and/or signatures
allows a wide number data corruption events to
be not only detected but corrected, including:

•	 One or more bytes changed within a single
page.

•	 One of more bytes changed across mul-
tiple pages, provided that bytes with the
same offset are not modified on different
pages.

Finally, overlapping ranges of bytes on
multiple pages that are damaged can be recon-
structed using a brute force operation. In these
cases multiple “trail reconstructions” must be
attempted, with each reconstructed tested by
computing the pages’ hash and seeing if the hash
matches the hash that was previously calculated.
Essentially, this approach uses a brute force
search for the correct data: once the correct set
of bytes is found, the signatures validates. In
practice such an approach would only work if
the overlap region in each page is confined to
4 bytes or less; beyond that, the computational
overhead is simply too great. If entire sectors
are corrupt or missing, reconstruction will not
be successful. (Such a reconstruction is not cur-
rently implemented by the afverify command,
but may be in a future version.)

Signed Raw Files

AFF’s AFM format allows a disk image to be
stored in an uncompressed raw file (eg file.

18 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Filename: evidence2.aff
Segments signed and Verified: 11
Segments unsigned: 0
Segments with corrupted signatures: 0

SIGNING CERTIFICATE :
 Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com
 Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com

Number of custody chains: 2

Signed Bill of Material #1:

SIGNING CERTIFICATE :
 Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com
 Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com

Date: 2008-04-26T11:06:06
Notes:

Signed Bill of Material #2:

SIGNING CERTIFICATE :
 Subject: C=US, ST=California, L=Remote, O=State Police, OU=Forensics,
 CN=Ms. Analyst, emailAddress=analyst@investiations.com
 Issuer: C=US, ST=California, L=Remote, O=State Police, OU=Forensics,
 CN=Ms. Analyst, emailAddress=analyst@investiations.com

Date: 2008-04-26T11:06:21
Notes:
This copy was made by the analyst.

EVIDENCE FILE VERIFIES.

Figure 4. afverify applied to file evidence2.aff created as part of the AFFLIB test rou-
tines

iso) and the associated metadata to be stored in
a .afm file. The AFM format can also handle
raw data stored as a series of split raw files (eg
file.001, file.002, etc.).

Beacuse AFF tools operate on named seg-
ments that are independent of the underlying
storage container, the AFM format allows any
ISO-file to be signed using the afsign com-

mand. The afsign program will automati-
cally detect if it is signing a raw file and will
create a .afm file to hold the signature. When
filename.iso is signed, the afsign create a
new file called filename.afm which contains
the signatures, the signed bill of materials, and
other metadata:

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 19

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

$ ls -l myfile.iso
-rw-r--r-- 1 simsong simsong 63107908

Apr 26 11:30 myfile.iso
$./afsign -s agent.pem myfile.iso
Signing segments...
Calculating BOM for page0...
Calculating BOM for page1...
Calculating BOM for page2...
Calculating BOM for page3...
$ ls -l myfile*
-rw------- 1 simsong simsong 16785481

Apr 26 11:30 myfile.afm
-rw-r--r-- 1 simsong simsong 63107908

Apr 26 11:30 myfile.iso

$

Although it is also possible to sign ISO files
using existing tools such as PGP with detached
signatures, afsign has several advantages:

•	 afsign will sign every 16 megabytes
chunk of the ISO file. In this way, if the
file is corrupted, it is possible to pinpoint
what data is invalid and what data is still
good.

•	 Unlike PGP, afsign allows the addition of
notes and other metadata when a signature
is written.

•	 afsign utilizes X.509 certificates, allow-
ing easy integration into existing PKI-based
systems.

•	 Because afsign also computes a parity
page, it is possible to repair a damaged
raw file using afrecover (as discussed
in Section 4.4).

Figure 5 illustrates recovery of a corrupted
file. First the file is corrupted with a block of
random data. Next the file is checked with
afverify. Finally the file is recovered using
afrecover (Figure 5).

AFFLIB 3 Encryption
Features

AFFLIB 3 introduces the ability to en-
crypt AFF evidence files with the AES-256
algorithm[NIST, 2001].

Each segment of each AFF file may be
optionally encrypted with a unique, randomly
generated 256 bit AES session key. This key
can then itself be encrypted using a passphrase
provided by the user or encrypted with an X.509
public key. Because of this two-step process,
the passphrase or public key used to encrypt an
AFF file can be changed in just a few seconds
without having to decrypt and re-encrypt the
entire disk image.

Whereas some other forensic programs
provide the ability to put a “password” on an evi-
dence file, those passwords can be disregarded
by non-conformant programs. (For example,
GetData claims that it’s MountImage Pro pro-
gram can “open EnCase password protected
image files without the password.”[GetData
Software, 2008] Libewf allows the user to
ignore the passphrase for EnCase images when
the images are opened.) AFFLIB 3 uses true
encryption: if you do not know the correct de-
cryption key, the only way to access the evidence
is to brute-force the encryption passphrase or
the X.509 private key.

AFF Encryption Schema

Similar to the design of AFF Signatures, AFF
Encryption is layered on top of the basic AFF
functionality that stores name/value pairs.

Three encryption layers are implement-
ed:

1.	 AFF Base Encryption, which provides
encryption of the AFF segment contents,
but not the segment names or the segment
flags. All of the segments in an AFF file
are encrypted with a the same randomly
generated affkey.

2.	 AFF Passphrase Encryption, a scheme
for storing the AFF file’s affkey in an AFF
segment that is itself encrypted with a
passphrase.

3.	 AFF Public Key Encryption, which stores
the AFF file’s affkey in an AFF segment that
is encrypted with an X.509 public key.

20 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

$ dd if=/dev/random of=myfile.iso count=1 skip=1 conv=notrunc
$ afverify myfile.afm
Filename: myfile.afm
Segments signed and Verified: 13
Segments unsigned: 0
Segments with corrupted signatures: 1

SIGNING CERTIFICATE :
 Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com
 Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com

Bad signature segments:
page0

Number of custody chains: 1

Signed Bill of Material #1:

SIGNING CERTIFICATE :
 Subject: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com
 Issuer: C=US, ST=California, L=Remote, O=Country Govt., OU=Sherif Dept,
 CN=Mr. Agent, emailAddress=agent@investiations.com

Date: 2008-04-26T11:35:18
Notes:

EVIDENCE FILE DOES NOT VERIFY; EVIDENTUARY VALUE MAY BE COMPROMISED.
$ afrecover myfile.afm
myfile.afm has a bad signature
Attempting to repair page0
Page page0 successfully repaired
$

Figure 5. Demonstration of file corruption and recovery using afrecover

AFF Base Encryption

Encrypted AFF segments are stored in segments
where name is generated by taking the name
of the unencrypted segment and appending a
slash followed by the encryption algorithm and
keysize. For example, whereas the first 16MB
of a disk image are typically stored in a seg-
ment named page0, in an encrypted AFF file
the page is named page0/aes256.

As discussed above, a single AFF session
key is used to encrypt all of the AFF segments
in a given file. In AFFLIB 3 this key is randomly
generated and is not accessible to the user.

Encryption is implemented as modifica-
tions to the af_update_seg and af_get_seg
functions inside the lib/afflib.cpp source
file:

•	 When a program linked with AFFLIB at-
tempts to store a segment, AFFLIB checks
to see if an encryption key has been set; if
one has, the segment’s content is encrypted
and the segment is stored at the modified
name (e.g., page0/aes256 instead of
page0).

•	 When a program linked with AFFLIB at-
tempts to fetch a segment and the segment

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 21

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

does not exist, AFFLIB checks to see if
an encryption key is set. If one is, AF-
FLIB attempts to fetch the segment with
the modified name. If the segment can be
fetched, AFFLIB attempts to decrypt the
segment with the key that has been set. If
decryption is successful the data is returned
to the caller.

By implementing encryption at this layer,
we provide for data to be encrypted after it is
compressed by the AFFLIB page system. This
is the preferred approach, as data cannot be
compressed after it is encrypted.

If a key is set, then pages that are written
are automatically encrypted, then written to
the data store.

If an unencrypted page is updated and en-
cryption is enabled, the encrypted page is first
written, then the unencrypted page is deleted.
The delete operation involves overwriting the
unencrypted segment with NULLs inside the
AFF file. Multiple overwrites are not imple-
mented, as they are not required to preserve data
privacy on modern hardware[NIST, 2006].

It is an error to change the affkey encryp-
tion key once it has been set.

Encryption Modes and Blocking

Encryption is performed with Cipher Block
Chaining mode. The initialization vector is the
name of the sector padded with NULLs. Every
segment in an AFF file has a different segment
name, thus a different IV. (IVs do not need to
be kept secret to ensure privacy; the sole pur-
pose of the IV is to assure that different pages
with the same data nevertheless have different
encryptions.)

Block ciphers such as AES require that all
buffers be padded to the block size; with AES
the block size is 16 bytes. For performance AFF
does not add padding if the page is already a
multiple of the block size. If the size of the
vector is not a multiple of the AES block size,
two values are computed:

extra	= len(modblocksize)	(1)
pad	=	16extra	 (2)

The buffer is padded by pad bytes; the
buffer is now a multiple of the AES block
size. The buffer is encrypted. Finally, extra
pad bytes are appended. Although the buffer
is expanded, it is now possible to recover the
original length of the buffer when the segment
is read and decrypted.

To decrypt the buffer and recover the
original length, the values extra and pad are
computed once again. The extra pad bytes are
removed, the buffer is decrypted, and last pad
bytes are removed. The length of the resulting
buffer is set to be the length of the encrypted
buffer minus the AES block size, and the de-
crypted data buffer is returned. In this way, the
length does not need to be explicitly coded.
This scheme is the same as the one employed
by PKCS #7 ([Laboratories, 1993]; in keeping
with PKCS #7, the pad byte is hex 01 if one
pad byte is required, hex 02 02 if two bytes
are required, and so on.

The integrity of decrypted page data can be
checked by comparing the MD5 of the decrypted
pagen/aes256 segment with the decrypted
contents of the pagen_md5/aes256 segment
using the afverify command, or by verifying
the AFF signatures if they are present.

Design Limitations

There are a number of limitations that arise from
the way that AFFLIB 3 implements encryp-
tion. In this section we will briefly discuss the
limitations and explain why we think they are
inconsequential:

•	 AFF Encryption only encrypts the byt-
estream of segments; the segment name
and 32-bit flag are unencrypted.

AFF encryption is created for the specific
purpose of encrypting data and metadata that
are acquired from disk images. For this rea-
son, we concluded that there was no reason

22 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to attempt to obscure the segment names or
32-bit flags with cryptography, because these
do not hold information that needs to be kept
confidential.

•	 A single AFF file may contain informa-
tion that is both encrypted and not
encrypted.

Because encryption is performed on a per-
segment basis, it is possible to have segments
that are both encrypted and unencrypted. We
see this ability as an advantage, as it allows
files that are unencrypted to be encrypted in
place without the need to allocate double the
disk space. Should the encryption process be
interrupted (for example, by a power failure),
the process can continue where it left off at
some later point.

•	 The affkey cannot be changed once it is
set for a specific file.

We believe that the added complexity to
support multiple affkeys within a single file
would not be worth the complexity. In part
this is because the key is not intended to be
used by the user: it is really just a session key
that is used by the passphrase or the public
key encryption system. Should the affkey be
compromised, every segment would need to be
reencrypted. The easiest way to do this would
be to copy one encrypted AFF file to another
file using the afcopy command.

AFF Passphrase Encryption

Most investigators would prefer to work with a
simple passphrase than with a 256-bit encryption
key that needs to be specially maintained, so
AFFLIB 3 provides this ability as well.

AFF Passphrase Encryption builds upon the
Base Encryption. When a passphrase is entered
AFFLIB uses the SHA256 algorithm to change
the passphrase into a 256-bit hash. But instead of
using this has as an encryption key directly, the
hash is used to encrypt the randomly generated

affkey. The encrypted session key is then stored
in the affkey-aes256 segment.

This scheme could easily be modified to
support multiple passphrases on each file, storing
them in segments such as affkey-aes256_0,
affkey-aes256_1, etc., although there have
been no requests for such functionality.

The contents of the affkey_aes256 seg-
ment is a 68 byte structure:

bytes purpose

0–3 The version number, stored in net-
work byte order.

4–67

The affkey, encrypted with AES in
Electronic Codebook (ECB) mode
using SHA-256 of the passphrase as
the encryption key.

68–131 The SHA-256 of the affkey (for
verification purposes).

With this scheme the passphrase can be

changed without requiring the entire disk im-
age to be re-encrypted—all that needs to be
done is that the affkey-aes256 segment is
read, decrypted using the old passphrase, and
and re-encrypted with the new passphrase. (If
a disk image does need to be re-encryped—for
example, if the affkey is compromised—this
can be easily done by copying the file with
the afcopy command from one AFF file to
another.)

A further advantage of this scheme is that
the passphrase is not cached in memory.

AFF Public Key Encryption

AFF’s public key encryption facilities allow a
disk image to be encrypted when it is created
with a public key; to use the disk image at a
later time requires the corresponding private
key. This might be useful if an image is to be
acquired in the field: once the image is acquired,
it would be cryptographically protected so that
it could not be deciphered even if the machine
(or person) doing the encryption was later
intercepted.

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 23

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In practice, the disk image’s public key is
specified when the file is created. At this point
a random affkey is created, encrypted with the
public key, and cached in memory. As long as the
file remains open it can be read and written. But
when the file is closed the in-memory copy of
the affkey is erased. Thus, once the file is closed,
access to the data for either reading or writing
requires the corresponding private key.

Public key encryption is implemented by
taking the affkey and encrypting it using the
OpenSSL “envelope” provisions. This involves
creating a random session key and initialization
vector, encrypting the affkey with the session
key using a block cipher, and then encrypting
the session key with the public key that will be
used for sealing. The resulting encrypted session
key, encrypted affkey, and initialization vector
are all stored it in a segment called affkey-
evpn where n starts at 0 and increases. Padding
is according to PKCS #1[Laboratories, 2002]. In
this manner the same affkey is never encrypted
twice with two different RSA public keys.

For encrypting, the public key used for
sealing can be specified in one of two ways:

•	 In a file whose name is provided on the

command line, using the “-C” option (“C”
for Certificate).

•	 The filename referenced by the environ-
ment variable AFFLIB_ENCRYPTING_PUB-
LIC_KEYFILE

For decrypting, the private key used for un-
sealing can be specified in one of two ways:

•	 In a file whose name is provided on the
command line, using the “-K” option (“K”
for Key).

•	 The environment variable AFFLIB_DE-
CRYPTING_PRIVATE_KEY.

Although AFFLIB does not currently
support the entering of a passphrase to decrypt
private keys that protected with a passphrase or
for using a smart card or cryptographic token,
these capabilities can be added to a future re-
lease if requested by users. OpenSSL already

has support for these capabilities; all that is
required is passing this capability through to
the AFFLIB API).

Integrating Encryption with
Existing Tools

Specifying a Passphrase as Part of a
Filename

AFFLIB understands Uniform Resource
Identifier[Berners-Lee et al., 2005] (URI)
syntax, and URIs have provisions for specifying
passwords. Thus, it is relatively straightforward
to integrate passphrase-protected AFF files
with existing command-line forensic tools by
simply specifying the passphrase as part of
the filename.

URIs such as http://www.afflib.org/
download/afflib.tar.gz consists of scheme
(e.g., http), an authority (www.afflib.org),
a path (download/afflib.tar.gz), a query
and a fragment (not shown here). Although the
authority is typically just a hostname, the full
syntax for the authority is:

authority = [userinfo “@”] host [
“:” port]

Userinfo was traditionally represented as
username:password. Although this syntax is
deprecated in the current version of RFC3986,
to avoid for the possible leakage of confidential
information, we have chosen to use it to provide
forensic workers with an easy means of specify-
ing passwords on the command line.

A file can be encrypted using AFF afcopy
command like this:

$ afcopy myfile.iso file://:password@/
myfile.aff

The resulting file can only be accessed
if the passphrase is used:

$ afcat myfile.aff\verb|wc
afcat: This file has 5 encrypted seg-

ments.

24 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

afcat: No unencrypted pages could be
found.

 0 0 0
$ afcat file://:password@/myfile.aff

| wc
 5481881 5980668 63107908

5.4.2 Specifying a passphrase in an
environment variable

As an alternative to specifying the
passphrase on the command line,
AFFLIB 3 allows passphrases to be
specified in the AFFLIB_PASSPHRASE
environment variable:

$ export AFFLIB_PASSPHRASE=password
$ afcat myfile.aff | wc
 5481881 5980668 63107908
$

Using Encryption with affuse

Finally, an encrypted image can be mounted
using affuse; the decryption is done in the

user-level affuse program, so that operating
system (and application program) are able to
directly process unencrypted, uncompressed
data:

affuse file://:password@/myfile.aff
mnt

ls -l mnt
total 0
-r--r--r-- 1 root root 67108864 Dec

31 1969 myfile.aff.raw

Notice that this command must be executed
as root. Also note that modification time of the
raw file is incorrectly set to the Unix epoch in
the current implementation.

Signature and
Encryption API

Table 3 describes the API for the AFF encryp-
tion layer.

AFF Base Encryption

af_set_aes_key
Sets the affkey that will be used for the currently
open AFF file. Returns an error if the key is
already set.

af_cannot_decrypt
Returns true if there are encrypted pages present
that cannot be decrypted with the currently speci-
fied affkey.

af_has_encrypted_segments Returns true if the currently open AFF file has
encrypted segments.

af_is_encrypted_segment Returns true if segname is encrypted.

AFF Passphrase Encryption

af_establish_aes_pass-
phrase

If no key has been set, creates a random affkey,
encrypts the key with the passphrase and stores
the segment in the AFF file. Returns an error if a
key has already been set.

af_change_aes_passphrase
Changes the passphrase for an AFF file from old-
phrase to newphrase. Returns an error if oldphrase
is not the correct phrase.

af_use_aes_passphrase

Tests to see if passphrase is in fact the correct
passphrase for the currently opened AFF file. If it
is, the passphrase will be used. An error is returned
otherwise.

Table 3.

continued on following page

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 25

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Conclusion

This article introduces the provisions for crypto-
graphic security, integrity, and chain-of-custody
that have been incorporated in Version 3 of the
Advance Forensic Format Library (AFFLIB).
These provisions build upon the AFF format
introduced by Garfinkel et. al in 2006[Garfin-
kel et al., 2006], allowing transparent access
to evidence files that are digital signed or
encrypted.

Compared with other approaches and
alternatives, AFF Signatures and Encryption
offers the following advantages:

•	 The scheme was simple to implement and
test.

•	 AFFLIB offers real encryption of eviden-
tiary data, not a simple “password” as is
present in other systems.

•	 Raw files can be signed without the need
to modify the original data.

•	 Unencrypted evidence files can be en-
crypted in-place.

Because of design decisions, AFFLIB
encryption does have a few disadvantages.
Specifically:

•	 Segment names and the 32-bit argument
stored with AFF segments are digitally
signed but they are not encrypted. Since
segment names and the 32-bit argument
never hold evidentiary data or metadata,
this lack of encryption is not considered
to be significant.

•	 Each AFF file is encrypted with its own
key; the only way to change the key is to
copy the data from one encrypted file to
another. However, the passphrase used to
encrypt a file can be changed instantly.

•	 AFFLIB caches the encryption key in
memory in the AF structure, allowing the
key to be stolen by hostile software. This
shortcoming can overcome through the
use of trusted operating systems or cryp-
tographic tokens.

Future Work

We continue to make improvements in AFF
and aimage. More information about AFF,
including the source code for AFFLIB 3, can
be found at http://www.afflib.org/.

AFF Public Key Signatures

af_set_sign_files

Opens the files containing a private key and certifi-
cate. The cryptographic information they contain
are thereafter used to sign all segments that are
updated.

af_sign_seg Asks AFF to sign a specified segment.

af_sign_all_unsigned_seg-
ments Asks AFF to sign all of the unsigned segments.

af_is_signed_segment Returns TRUE if there is a signature segment for
the segment segname.

AFF Public Key Encryption(Sealing)

af_set_seal_certificates
Creates an affkey, encrypts the key with each of
the provided X.509 certificates, and stores each
encrypted affkey in its own segment

af_set_unseal_keybuffer Specifies a string buffer containing an unencrypted
RSA key in PEM format.

Table 3. continued

26 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Acknowledgment

Brian Carrier and Peter Wayner both provided
useful feedback on the initial design of the AFF
system. Jesse D. Kornblum provided usefulf
eedback on the design of the cryptographic
layer. Chris Beeson and Bryant Ling at the
FBI’s Silicon Valley Regional Computer Fo-
rensics Laboratory provided useful feedback
on the requirements of cryptography for law
enforcement. Basis Technology Corp. provided
substantial funding for initial work on AFF.
Additional funds for AFF development were
provided by the Naval Postgraduate School’s
Research Initiation Program.

The author would also like to thank the
anonymous reviewers: your comments were
very helpful in improving this manuscript.

AFF and AFFLIB are trademarks of Simson
L. Garfinkel and Basis Technology, Inc.

References
Adams, C., Cain, P., Pinkas, D., and Zuccherato,
R. (2001). Internet x.509 public key infrastructure
time-stamp protocol (tsp).

Adams, C. and Lloyd, S. (2002). Understanding PKI:
Concepts, Standards, and Deployment Consider-
ations. Addison-Wesley Professional, 2 edition.

Amazon (2008). Amazon simple storage service
(amazon s3). Amazon Web services. http://aws.
amazon.com/s3.

ASR (2002). Expert witness compression format
speciï¬cation. ASR Data Acquisition and Analysis.
http://www.asrdata.com/SMART/whitepaper.html.

Bartel, M., Boyer, J., Fox, B., LaMaccia, B., and Si-
mon, E. (2002). Xml-signature syntax and processing.
W3C. http://www.w3.org/TR/xmldsig-core/.

Berners-Lee, T., Fielding, R., and Masinter, L.
(2005). RFC 3986: Uniform resource identifier (uri):
Generic syntax.

Boneh, D. (2001). Cryptographic hashing.
http://crypto.stanford.edu/ dabo/courses/cs255\
s\do5(w)inter01/1-hashing.pdf, Course notes for
CS255 Winter 01.

Carrier, B. (2006). A Hypothesis-Based Approach to
Digital Forensic Investigations. PhD thesis, Purdue
University.

Computer Systems Laboratory, N. I. o. S. and Tech-
nology (1993). FIPS-180 secure hash standard. U.S.
Department Of Commerce. Also known as: 58 Fed
Reg 27712 (1993).

Dierks, T. and Allen, C. (1999). RFC 2246: The
TLS protocol version 1. Status: PROPOSED
STANDARD.

Diffie, W. and Hellman, M. E. (1976). New directions
in cryptography. IEEE Transactions on Information
Theory, IT-22(6):644–654. citeseer.ist.psu.edu/dif-
fie76new.html.

Fonseca, B. (2007). Hard-drive changes: Long block
data standard gets green light. Computerworld.
http://www.computerworld.com/action/article.do?
command=printArticleBasic&articleId=9018507.

Friedl, S. (2005). An illustrated guide to crypto-
graphic hashes. http://www.unixwiz.net/techtips/
iguide-crypto-hashes.html.

Garfinkel, S. L. (2008). Afflib. http://www.afflib.
org/.

Garfinkel, S. L., Malan, D. J., Dubec, K.-A., Stevens,
C. C., and Pham, C. (2006). Disk imaging with
the advanced forensic format, library and tools. In
Research Advances in Digital Forensics (Second
Annual IFIP WG 11.9 International Conference on
Digital Forensics). Springer.

GetData Software (2008). GetData Software Develo-
poment Company. http://www.mountimage.com/.

Haggerty, J. and Taylor, M. (2007). FORSIGS:
Forensic Signature Analysis of the Hard Drive
for Multimedia File Fingerprints, pages 1–12.
Springer. http://www.springerlink.com/content/
21478kr877478805/.

Harbour, N. (2006). dcfldd. http://dcfldd.sf.net.

Housley, R. and Polk, T. (2001). Planning for PKI:
Best Practices Guide for Deploying Public Key
Infrastructure. Wiley.

ICS (2008). Secure hash signature generator. Intelli-
gent Computer Solutions. http://www.ics-iq.com.

ITU (2005). Recommendation x.509 (08/05): The
directory: Public-key and attribute certificate frame-

International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009 27

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

works. International Telecommunication Union.
http://www.itu.int/rec/T-REC-X.509-200508-I.

Keightley, R. (2003). EnCase version 3.0 manual
revision 3.18. Guidance Software. http://www.
guidancesoftware.com/.

Kloet, B., Metz, J., Mora, R.-J., Loveall, D., and
Schreiber, D. (2008). libewf: Project info. Uitwis-
selplatform.NL. http://www.uitwisselplatform.
nl/projects/libewf/.

Kohnfelder, L. M. (1978). Towards a practical public-
key cryptosystem. Undergraduate thesis supervised
by L. Adleman.

Laboratories, R. (1993). Pkcs #7: Cryptographic
message syntax standard. ftp://ftp.rsasecurity.com/
pub/pkcs/ascii/pkcs-7.asc, Version 1.5.

Laboratories, R. (2002). Pkcs #1: v2.1: Rsa cryptog-
raphy standard. ftp://ftp.rsasecurity.com/pub/pkcs/
pkcs-1/pkcs-1v2-1.pdf.

NIST (2001). Federal information processing
standards publication 197: Specification for the
advanced encryption standard (aes). National Insti-
tute of Standards and Technology. http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf.

NIST (2006). Guidelines for media sanitization.
National Institute of Standards and Technology.
http://csrc.nist.gov/publications/nistpubs/800-87/
sp800-87-Final.pdf.

NIST (2007). Announcing the development of new
hash algorithm(s) for the revision of the federal
information processing standard (fips) 180-2, secure
hash standard. National Institute of Standards and
Technology, Commerce. http://csrc.nist.gov/groups/
ST/hash/documents/FR\s\do5(N)otice\s\do5(J)an07.
pdf.

Novak, D. J. (2002). Governmentâ™s opposition to
standby counselâ™s reply to the governmentâ™s
response to courtâ™s order on computer and e-
mail evidence. http://notablecases.vaed.uscourts.
gov/1:01-cr-00455/docs/68092/0.pdf, UNITED
STATES OF AMERICA v. ZACARIAS MOUSS-
AOUI, Defendant, Criminal No. 01-455-A.

NTI Forensics Source, B. S. (2008). Safeback bit
stream backup software. http://www.forensics-intl.
com/safeback.html.

OpenSSL (2008). Openssl: The open source tool-
kit for ssl/tls. The OpenSSL Project. http://www.
openssl.org.

Rivest, R. (1992). RFC 1321: The MD5 message-
digest algorithm. Status: INFORMATIONAL.

Rivest, R. L., Shamir, A., and Adelman, L. M. (1977).
A METHOD FOR OBTAINING DIGITAL SIGNA-
TURES AND PUBLIC-KEY CRYPTOSYSTEMS.
Technical Report MIT/LCS/TM-82, Massachusetts
Institute of Technology. http://citeseer.ist.psu.edu/
rivest78method.html.

Schneier, B. (2004). Opinion: Cryptanalysis of md5
and sha: Time for a new standard. Computerworld.
http://www.computerworld.com/securitytopics/se-
curity/story/0„95343,00.html.

Szeredi, M. (2008). Filesystem in usespace. http://
fuse.sourceforge.net/.

US Department of Defense (2008). Cac: Common
access card. US Department of Defnese. http://www.
cac.mil.

US Treasury (2008). Ilook investigator. US Depart-
ment of the Treasury. http://ilook-forensics.org.

VMWare (2008). Run virtual machines on your pc for
free. http://www.vmware.com/products/player/.

Wang, X., Feng, D., Lai, X., and Yu, H. (2004). Col-
lisions functions md4, md5, haval-128 and ripemd.
In Report 2004/199. CRYPTO 2004 Cryptology
ePrint Archive. http://eprint.iacr.org/2004/199.pdf,
rump session.

Zimmermann, P. R. (1995). The Official PGP User’s
Guide. MIT Press.

Endnotes
1	 This article is released by the Naval Postgraduate

School, an agency of the U.S. Department of De-
fense. Please note that within the United States,
copyright protection, under Section 105 of the
United States Code, Title 17, is not available
for any work of the United States Government
and/or for any works created by United States
Government employees. You acknowledge that
this article contains work which was created by
an NPS employee and is therefore in the public
domain and not subject to copyright. You may

28 International Journal of Digital Crime and Forensics, 1(1), 1-28, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

use, distribute, or incorporate this article pro-
vided that you acknowledges this via an explicit
acknowledgment of NPS-related contributions
to your publication. You also agree to acknowl-
edge, via an explicit acknowledgment, that any
modifications or alterations have been made to
this article before redistribution.

2	 A comprehensive list of disk imagers can be
found on the Forensics Wiki at http://www.
forensicswiki.org/index.php?title=Category:
Disk_imaging.

3	 Assuming that the signature algorithm itself
has not been compromised, of course

4	 Five NULL bytes are used so that the data
offset for the hash calculation is the same with
Signature Mode 1 as it is for Signature Mode
0, which simplifies the implementation.

Simson L. Garfinkel is an associate professor at the Naval Postgraduate School in Monterey, California, USA,
and a fellow at the Center for Research on Computation and Society at Harvard University. His research
interests include computer forensics, the emerging field of usability and security, personal information
management, privacy, information policy and terrorism. Garfinkel is the author or co-author of fourteen
books on computing. He is perhaps best known for his book Database Nation: The Death of Privacy in the
21st Century. Garfinkel’s most successful book, Practical UNIX and Internet Security (co-authored with
Gene Spafford), has sold more than 250,000 copies and been translated into more than a dozen languages
since the first edition was published in 1991. Garfinkel received three Bachelor of Science degrees from MIT
in 1987, a Master’s of Science in journalism from Columbia University in 1988, and a PhD in computer
science from MIT in 2005.

