
Amazon S3 for Science Grids: a Viable Solution?
Mayur Palankar

Adriana Iamnitchi
Computer Science and Engineering

University of South Florida,
Tampa, FL 33620, USA

{mpalanka,
anda}@cse.usf.edu

Matei Ripeanu
Electrical and Computer

Engineering
University of British Columbia,

Vancouver, BC V6T 1Z4, Canada

matei@ece.ubc.ca

Simson Garfinkel
Center for Research on

Computation and Society
Harvard University,

Cambridge, MA, USA

simsong@acm.org

ABSTRACT
Amazon.com has introduced the Simple Storage Service (S3), a
commodity-priced storage utility. S3 aims to provide storage as a
low-cost, highly available service, with a simple ‘pay-as-you-go’
charging model. This article makes three contributions. First, we
evaluate S3's ability to provide storage support to large-scale
science projects from a cost, availability, and performance
perspective. Second, we identify a set of additional functionalities
that storage services targeting data-intensive science applications
should support. Third, we propose unbundling the success
metrics for storage utility performance as a solution, to reduce
storage costs.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software – performance evaluation (efficiency and effectiveness).

General Terms
Measurement, Performance, Experimentation.

Keywords
Utility computing, Performance evaluation, Amazon Simple
Storage Service.

1. INTRODUCTION
Data Intensive scientific collaborations produce large amounts of
data. Modern high-energy physics experiments, such as DZero
[1], LHC [2], or SLAC [3], typically generate more than one
TeraByte (TB) of data per day and may soon produce ten times as
much [4]. Managing this amount of data requires significant
human and material resources, resulting in corresponding high
storage and management costs.

Amazon Web Services, a wholly owned subsidiary of
Amazon.com, now offers the Simple Storage Service (S3) [5], a

novel storage utility with a simple ‘pay-as-you-go’ charging
model. Amazon claims its service offers infinite storage capacity,
infinite data durability, 99.99% availability, and good data access
performance [5]. S3 uses open protocols and provides sample
source code allowing developers to easily integrate it into their
existing applications.

This paper evaluates whether S3 is a feasible and cost effective
alternative for offloading storage from in house maintained mass
storage systems for today’s scientific collaborations like DZero,
LHC, or SLAC. To this end, we characterize S3’s observed
availability and data access performance using a collection of our
own nodes and geographically-distributed PlanetLab nodes [6].
We use this characterization in conjunction with more than two
years of real traces from a scientific community, the DZero
Experiment, a high energy physics collaboration that spans 18
countries and has more than 500 active users. We evaluate the
feasibility, performance, and costs of a hypothetical S3—
supported DZero collaboration.

The contributions of this paper are:

• The first independent characterization of S3 in terms of data
user-observed performance.

• An evaluation of the costs of outsourcing the storage
functions to S3 to support a data-intensive scientific
application and an analysis of alternatives to reduce costs.

• A discussion of S3 functionality and security features, and
recommendations for improvement in the context of data-
intensive collaborative applications.

The rest of this paper is organized as follows: Section 2 gives an
overview of S3’s core concepts, architecture, and functionality.
Section 3 presents data usage characteristics in science grids and
looks at storage service requirements for such applications.
Section 4 presents a measurement-based evaluation of S3
performance. Section 5 estimates the S3 costs and discusses
various models for using S3 to support DZero-like applications.
Section 6 lists out future discussion topics and suggestions for
improving S3. Section 7 summarizes our study and outlines future
research directions.

2. AMAZON S3
S3 is supported by a large number of computer systems
distributed across multiple data centers [7] in the United States

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DADC’08, June 24, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-60558-154-5/08/06...$5.00.

and Europe (S3-Europe) and is expected [5] to offer low data
access latency, infinite data durability, and 99.99% availability
(S3 pays users for average monthly uptime < 99.99%). Since its
launch, S3 has acquired a large user base ranging from home
users and small businesses to large business enterprises [8].
Currently, S3 stores over 5 billion user objects and handles over
900 million user requests a day [9].

In addition to S3, Amazon Web Services offers to sell virtual
computer time at the cost of $0.10 per CPU hour on its Elastic
Compute Cloud (EC2). The primary relevance of EC2 to this
paper is that there are no bandwidth charges for data sent between
EC2 and S3 (except between EC2 and S3-Europe, which is
charged). As a result, scientific data stored on S3 can be cheaply
processed using virtual EC2 hosts.

2.1 Concepts and Architecture
Data stored in S3 is organized over a two-level namespace. At the
top level are buckets–similar to folders or containers–which have
a unique global name and serve several purposes: they allow users
to organize their data; they identify the user to be charged for
storage and data transfers, and they serve as the unit of
aggregation for audit reports. Each Amazon Web Services (AWS)
account may have up to 100 S3 buckets.

Each bucket can store an unlimited number of data objects. Each
object has a name, an opaque blob of data (of up to 5GB), and
metadata consisting of a small set of predefined entries and up to
4KB of user-specified name/value pairs.

Users can create, modify and read objects in buckets, subject to
access control restrictions described in the next section. Renaming
an object or moving it to a different bucket requires downloading
the entire object under one name and writing it back to S3 with
the new name. Search is limited to queries based on the object's
name and to a single bucket. No metadata or content-based search
capabilities are provided.

Charging for the S3 service is based on storage volume (currently
at a rate of $0.15/GB/month; $0.18/GB/moth if stored in Europe),
data transfer activity (at $0.10/GB for uploads and between
$0.13/GB and $0.18/GB for downloads), and a per-transaction
charge ($0.01 per 1,000 PUT and LIST operations; $0.001 for
each GET operation; DELETE is free). Regardless of the owner
of an object or the identity of the user accessing the object, all
charges are directed to the owner of the bucket that stores the
object generating the charges.

2.2 The Security Model
When users register with Amazon’s Web Services, they are
assigned an identity and a private key. Both keys are permanently
stored at Amazon and can be downloaded from the Amazon’s
Web Services website. Clients authenticate using a public/private
key scheme and keyed-hash message authentication code (HMAC
[10]). Because the private key is made by Amazon and
downloaded from the website, the security provided by S3 is
equivalent to security provided by a simple password; this
password can be reset by anyone who can receive email at a
registered email address. Each S3 account is linked to a credit
card used for account billing.

Access control is specified using access control lists (ACL) at the
granularity of buckets or objects. Each ACL can specify the

access attributes for up to 100 identities. A limited number of
access control attributes are supported: read for buckets or
objects, write for buckets only, and read and write ACL. Buckets
can be configured to store access log records for audit purposes.
These logs contain details such as the request type, the object
accessed, and the time the request was processed.

2.3 Data Access Protocols
Currently, S3 supports three data access protocols: SOAP [11],
REST [12] and BitTorrent [13]. Of these, BitTorrent deserves
special attention. BitTorrent is a popular file-sharing protocol that
enables efficient cooperative data distribution: data is initially
distributed at one or more seed sites that are pointed to by a
tracker. As clients begin to download a BitTorrent file, those
clients register themselves with the tracker and make portions that
they have downloaded available to other clients. S3 can provide
both tracker and seed functionality, allowing for substantial
bandwidth savings if multiple concurrent clients demand the same
set of objects.

3. CHARACTERISTICS OF SCIENCE
GRIDS
Data produced, stored and used in science grids have particular
scale and usage characteristics. This section surveys the usage
characteristics of data intensive scientific collaborations and their
implied requirements on the storage infrastructure. To quantify
this characterization we focus the discussion on DZero [1], a
representative high-energy physics collaboration that processes
data generated by the particle accelerator at Fermi National
Accelerator Laboratory.

3.1 Data Usage Characteristics
Particular to scientific communities is the intense usage of data:
jobs submitted by hundreds of users process massive collections
(TeraBytes), organized in hundreds to thousands of GB-sized
files. For example, the 113,062 jobs submitted by the 561 world-
wide located DZero scientists processed more than 5.2 PetaBytes
of data between January 2003 and March 2005, a sustained access
rate of over 78 MBps. The 5.2 PB of processed data occupies 375
TB of storage organized in almost one million distinct files [14].
At the same time, access to data can be shared by tens or even
hundreds of users: in DZero files are accessed by 45 different
users.

Another characteristic is co-usage: in science collaborations
groups of files are often used together. Taking the high-energy
physics project DZero as a case study again, each data analysis
job accessed on average 102 files, with a maximum of more than
20,000 files. The need for simultaneous access to multiple files
stresses the problems brought up by the large file size, requesting
transfers of data collections in the order of TeraBytes. For
example, the largest 10 datasets in the DZero traces analyzed in
[15] are between 11 and 62 TB.

Finally, a significant part of the data, the so-called derived data,
can be recomputed from raw data which is typically generated by
scientific instrument (e.g., an astronomical observatory). This
particularity allows for flexibility in data management solutions
by trading data storage and transfer costs for computation costs: it
sometimes may be more efficient to regenerate derived data than
to store it or transfer it between remote locations.

3.2 Storage Service Requirements for Data
Intensive Scientific Applications
A storage infrastructure targeting data intensive scientific
communities must provide:

• Data durability: Depending on the specifics of each
science project, losing experimental (raw) data may be costly
(since repeating a physics experiment may require operating
expensive instruments) or even unacceptable. This results in
strong durability requirements for raw data. However,
derived data can generally be reconstructed from raw data at
the cost of additional computation.

• Data availability: Data availability quantifies the
successful access to previously stored data. Although most of
the data is used for batch computations that do not require
high availability by themselves, the fact that these operations
often require co allocation of expensive resources (e.g., large
compute resources, visualization equipment) increases the
premium put on availability. Note that durability does not
imply availability – data can be stored and eventually be
accessible but not available at the time of the request.
However, availability requires durability. Finally, service
availability for uploads rather than retrieval is important
since data can be temporarily stored at experimental facilities
only for limited periods of time.

• Access performance: While data archival is an important
use case, we expect that the predominant use case in our
context is live remote storage. Thus, fast data access is a key
to support science applications.

• Usability: Although ease of use can be quantified across
multiple directions, the main characteristic of interest in the
context of this paper is a set of protocols and APIs that allow
composability with higher-level services for easy integration
with science applications.

• Support for security and privacy: Science applications are
often collaborative with complex data sharing arrangements
between multiple parties, users or institutions. The security
infrastructure should enable defining and enforcing such
sharing arrangements.

• Low cost: Ultimately, cost is the main driver for adopting
the storage utility paradigm. Utilities have the potential to
benefit from economies of scale and we believe data storage
is ripe for such development. However, lack of
standardization and the particular requirements of data
intensive science might delay or make inopportune the
adoption of storage utilities.

4. AMAZON S3 EVALUATION
Our evaluation of S3 is driven by the requirements of data-
intensive scientific applications outlined in the previous section.
This section describes our experimental setup and presents our
quantitative evaluation of S3.

4.1 Experiment Setup
We conduct three different sets of experiments in order to
evaluate the services provided by S3 using the Java, Python, and

C++ implementations of the S3 REST API. Our choice for REST
is motivated by its performance (REST is faster than SOAP
because the data is sent raw without the need to encode using
BASE64) and popularity (85% of current S3 usage is based on the
REST protocol [16]).

We used five nodes on the public Internet for our experiments:
four PlanetLab nodes and one dedicated machine at the University
of South Florida (USF) in Tampa, Florida. We chose the
PlanetLab nodes at locations that geographically approximate
DZero user location: hence, two nodes were located in Europe
(one in Germany and one in France) and two were located in the
US (in New York and California).

We also conducted a series of measurements from several servers
located inside Amazon's EC2 cloud. Because both S3 and EC2 are
within Amazon's border routers, these experiments were able to
measure the availability and performance of S3 free from the
impact of Internet congestion and disruptions.

4.2 Data Durability
While characterizing S3 data durability is not the main goal of our
study, we mention that, during the twelve-month time span of
running S3 experiments, we have not observed even a single case
of permanent data loss. An experimental study of different
magnitude is required to characterize the data durability offered
by the S3 service. Constrained by limited budget of
experimenting with the service, we limited the size of the files
used for our experiments to 1GB. We used more than 10,000 files
for various experiments with file sizes ranging from one Byte to
1GB. Due to the limited budget, we also had to watch the number
of accesses to large file sizes. More than 137,000 requests to and
from the S3 server were made during the period of study.

4.3 Data Availability
Between March 20th and May 1st 2007 we conducted a series of
tests from Amazon's EC2 cluster to determine availability and
bandwidth of the S3 offering. Before the start of the test we
stocked an S3 bucket with a variety of test objects with sizes of
1KByte, 1MByte, 16MBytes, and 100Mbytes (stored at S3 and
not S3-Europe). The tests consisted of randomly writing objects
of these sizes and reading the pre-stocked objects. The probes
were separated in time by a random delay where the length of the
delay followed a Poisson distribution, so that the statistical
properties of the samples would have the same statistical
properties of the system being measured (see [17] for a discussion
of this technique). Our system retried each request a maximum of
5 times, and then declared a failure.

Observed availability from EC2 was quite high. In a total of
107,556 tests (each consisting of a read and write) from EC2, we
encountered 5 instances where a HTTP PUT request needed to be
retried because S3 indicated that the PUT had failed (S3 returns
the MD5 hash of objects that are successfully PUT; in these cases
it did not return an MD5 hash), and 23 cases in which the HTTP
PUT request timed out and no response code was returned. Reads
were more reliable: there were only 4 cases in which an HTTP
GET had to be retried once, and 1 case in which it had to be
retried twice.

Amazon recommends retrying failed access attempts with an
exponential back-off. Of course, if the software never declares a

failure, then 100% availability will always be observed unless
data is lost or the S3 service is discontinued. Restricting the
analysis to the 19,630 operations of 1MByte or greater, we found
zero probes where the throughput for write requests was less than
10KB/s and just 6 (0.03%) where the throughput was less than
100 KB/s.

We also ran a series of S3 availability tests from a dedicated
machine at USF. During this trial we repeatedly downloaded the
same object every 15 minutes, for a period of 23 weeks and a total
of 15,456 access requests. We observed an availability rate of
95.89% after the original download attempt, 98.06% after the first
retry, 99.01% after the second retry, 99.76% after the third retry,
99.94% after the fourth retry and a full 100% availability after the
fifth retry. Unlike our tests from EC2, these tests were influenced
by both S3's internal systems and by Internet connectivity
between Amazon and USF (Note, however, that for the numbers
we report above we have eliminated all test cases where we have
been able to detect a network fault by immediately after our
unsuccessful attempt to access S3 data.)

4.4 Data Access Performance
Our objective in this section is to evaluate the access performance
to S3-stored data from a client perspective. We compare the
download time for objects sized 1B, 1KB, 1MB, 16MB and
100MB, with a total of 13,178 downloads.

4.4.1 Single-threaded performance
Figure 1 presents the cumulative distribution of observed
bandwidth for reads from EC2 to S3. Each trace corresponds to a
different object size, with 1Byte objects on the left and 100MByte
objects on the right. The time for downloading the 1 Byte object
is dominated by the S3 transaction overhead; the plot indicates
that S3 can sustain a maximum of 100 transactions per second,
with an average of roughly 50 transactions per second. The other
end of the scale indicates a maximum bandwidth of
approximately 21 MB per second, with average peak bandwidth
of approximately 17 MB/sec.

Fig 1. Cumulative Fraction graphs showing time to access S3

objects of 1B, 1KB, 1MB, 16MB and 100MB from EC2.

Amazon states that S3 was designed to store large objects; our
experience confirms this. The performance of reading even 1MB-
sized objects suffered due to transaction overhead. Only when we
were reading objects of 16MB and larger did our tests enjoy
consistently high performance.

We repeated all experiments to estimate the time to upload data to
S3. We find that the upload time is largely similar to the
download time for each location, with the exception that 1MB-
sized objects are much faster to write than to read-back, probably
a result of write-caching.

4.4.2 Concurrent performance
To simulate a number of experimenters attempting to access the
same scientific data stored in S3, we performed a series of tests in
which two virtual machines attempted to repeatedly access the
same data stored in the same bucket. In our experiment one
virtual machine ran on the EC2 cluster usma1 and the second
running on cluster usma2, accessed the same bucket with repeated
100MB GET and PUT operations. The virtual machines were
coordinated, with each executing 1 thread for 10 minutes, then 2
threads, then 3 threads, and so on up to 6 threads, at which point
the experiment reset back to 1 thread. This experiment was
repeated for 11 hours.

Fig 2. Performance of 100MB GETs from S3 for one thread as
the number of concurrent threads running on the same virtual

machine instance increases.

As shown in Figure 2 and 3, as the number of threads increased
the per-thread bandwidth decreased but the aggregate bandwidth
increased. With two machines running with six threads each, we
enjoyed a bandwidth of roughly 30 megabytes per second, which
is very close to the maximum bandwidth (250 Mbits/sec, or 31
Mbytes/sec) that Amazon states is available to any single S3
object or EC2 instance.

Fig 3. Performance of 100MB GETs from S3 for combined

threads (down) as the number of concurrent threads running
on the same virtual machine instance increases.

4.4.3 Remote Access Performance
We compare the download time from five access locations (one
dedicated node located at USF and four other PlanetLab nodes).
The data set includes 28 experiments (4 times a day over 7 days)
to quantify variability due to competing Internet traffic. Our
experiments confirm that the location of the client and the time of
the day impact the observed access performance. Figure 4
presents the average, minimum and maximum download
bandwidth at each node as a function of the size of file
downloaded. Additional data is available in our technical report
[18].

Fig 4. Average, minimum and maximum observed download

bandwidth for different client locations and file sizes.

4.5 Downloading Files via BitTorrent
Typically, multiple replicas of the same data item are available
simultaneously at various sites participating in a virtual
organization. BitTorrent enables partial parallel downloads from

each of these replicas thus allowing for faster downloads. For the
science community, the availability of data access through
BitTorrent protocols is relevant as it enables simple integration of
cooperative caching mechanisms to improve access performance.
Additionally, the cooperative cache created by BitTorrent is a
direct solution to reduce S3's transfer charges while preserving the
data durability and availability offered by S3.

The main goal of our experiment is, first, to compare the
BitTorrent enabled data access performance with that offered by
regular S3 transfers and, second, to understand the load balance
between S3 and other data sources when multiple sources (‘seeds’
in BitTorrent parlance) are available.

To quantify the effectiveness of using BitTorrent, we download
data from a single location (Tampa, FL) while varying the number
of seeds hosted on PlanetLab nodes and always maintaining a
seed at S3. We measure the download time and the amount of
data downloaded from S3.

Fig 5. Time taken and percentage of data downloaded from S3

as a function of the number of seeds present in the system.

Figure 5 demonstrates that S3 contributes a large percentage of
the data volume. To check for any unfair play by S3, experiments
were repeated on dedicated machines at USF instead of
PlanetLab. It appears that S3 is fair and its larger contribution in
BitTorrent was due to unbalanced load and network conditions.

To continue with our black-box exploration, we tried to use the
S3-provided BitTorrent tracker without incurring the expense of
using S3 as a BitTorrent seed, thus benefiting from the high
availability of the Amazon provided tracking service at a very low
cost. We discovered we could do this by revoking the read
permits from the S3-stored object (i.e., mark it as private). This
approach blocked nodes from downloading data from S3 and
forced the client instead to use other seeds. Our experiments show
(Figure 6) that S3 permits this use; we observed only small
performance degradation due to a lower parallelism when
downloading data from fewer sources [24].

To summarize, our S3 experimental results show good
availability, variable download time depending on the node
location and file size, and a fair use of the BitTorrent protocol.

Fig 6. Marking the S3 seed as private (and in effect freeriding
the S3 tracker) leads to minimal change in the download time

(8% increase) while the Amazon related costs are almost
entirely eliminated. The figure presents the volume of data
downloaded from S3 (left bar) and five other seeds (right

bars) and the total client download time in two scenarios: with
S3 data public and private. Right-hand axis not scaled to zero.

5. AMAZON S3 FOR SCIENCE GRIDS
This section addresses three issues related to the feasibility of
using S3 to support data intensive scientific applications: it
estimates the cost of using S3, it evaluates whether S3
performance is adequate to support scientific collaborations, and
it analyses S3 security functionality from the perspective of
supporting the complex data-sharing required. While answering
these questions in general is a generous subject, our approach is
based on a case study: we use DZero-generated load and study
different deployment scenarios that combine S3 and data caching.

5.1 Costs
While the cost of storage systems and their management has
continued to decrease in recent years, it still represents a major
expense, often the single most expensive item when running an IT
infrastructure. In this section, we consider the purely hypothetical
case of DZero’s using S3 for its data needs. Two types of costs
are thus to be considered: data access costs and data storage costs.
DZero storage characterization as reported from 27 months of
traces is summarized in Table 1.

Table 1. DZero trace characteristics

Trace recording interval 01/2003 – 03/2005

Number of jobs 113,062

Hours of computation 973,892

Total storage volume 375 TB

Total data processed 5.2 PB

Average data access rate 273 GB/hour

Assuming all DZero data is stored by and accessed from S3, the
annual costs are $691,200 per year for storage ($829,440 for S3-

Europe) and $335,012 per year for transfer (initial upload and
download), a total of $1.02 million per year. Each of these costs
can be reduced in various ways. In the rest of this section we first
outline two approaches to reduce storage costs by exploiting
access patterns and the fact that part of the data is derived, and
then we outline approaches to reduce data transfer costs based on
collaborative caching enabled using BitTorrent.

Storage costs can be reduced by archiving “cold” data on low-cost
storage and maintaining only the data most likely to be used on
high-availability, low-latency storage. An analysis on the DZero
traces shows that a significant part of data is used for only limited
time periods. This data can be archived on slower durable storage
without an impact on performance. If we consider the lifetime of
a file as the interval between the first and the last access to it as
recorded in the 27 months of DZero traces, then about 30% of the
files do not live longer than 24 hours, 40% not more than one
week, 50% have a lifetime shorter than one month, while about
35% were still in use more than five months after the first
recorded access. Consequently, out of the 4.54TB of data
accessed each day, 30% will not be needed after 24 hours. S3
provides a log facility that can be used to determine which objects
are suitable for archiving.

A second way to reduce storage costs is to only store raw data and
derive the rest of the data from raw data. Our workloads do not
contain sufficient information to allow us estimate the potential
benefits of this approach.

Transfer costs can be reduced by using local caches. Data in
DZero is highly cacheable: experimental evaluations [14] with
various cache replacement algorithms performed on the DZero
traces show that TB-sized local caches may reduce data
transferred from the permanent storage to under 2.5% of the cache
size. For example, for a cache of 50TB, the amount of data that
needs to be transferred on average per job is 0.013% of the cache
size, or 6.6GB [14]. Given that over the 27 months, 113,062 jobs
were submitted within the subset of traces, the cost of cache
misses leading to accesses to S3 is $.87 per job or $98,748 for all
the jobs in our traces. This leads to reducing data transfer costs to
$43,888 per year, 20 times lower than in the original scenario
without caching1. BitTorrent could be used to further reduce
transfer costs by building a large collaborative cache across
DZero sites.

S3 data transfer costs can also be reduced by using computation
close to where data is stored. Since data transfers between S3 (not
S3-Europe) and Amazon’s Elastic Computing Service (EC2) are
not charged, EC2 hosted computations can be used to replace the
data transfer costs for derived data with the cost to recompute this
data on EC2 ($0.1/hour of computation). Over the period of our
workloads, this result in an average of $43,284 per year
(relatively close to the access costs above).

Our experience using EC2 was excellent. Although Amazon
makes no guarantee regarding the durability or availability of any
EC2 instance, we ran instances for a total of 6 CPU months and
had only one case in which an instance was rebooted without our

1 This discussion ignores the additional costs of purchasing and

maintaining the caches which is low relative to the other costs
presented here.

initiation. After reboot, the contents of our instances' hard drives
were preserved, even though Amazon states that all information
on an instance should be considered volatile and persistent data
should be stored on S3.

Although the ideas above are acknowledged methods in data-
intensive computing, they require support from the application
side or from S3, as discussed further in Section 6.

5.2 Performance
A second question we are set to address is whether the potential
savings obtained by outsourcing data storage come at the price of
performance degradation.

5.2.1 Impact of variability of data access
performance
We have noted that data access performance varies with the
location of the downloading node. We suspect that S3 operates
multiple datacenters (in both US and Europe locations) and makes
data placement decisions depending on the location of the user
creating the bucket that stores the data. This assumption, if true,
explains the observed variability in download times that goes
beyond the location of the downloading node and the time of day.
It may also result in the need to change the data placement
decisions to reduce the performance differential that different
participants to scientific collaborations spread across the world
might experience.

5.2.2 Impact of access performance to individual
data items
First, we note that, for batch processing with little or no
interactive user input, the relatively slow access S3 provides to
individual data items does not have a significant impact on user
observed performance as long as jobs are specified in advance and
S3 is able to provide data at an overall rate faster than the rate at
which it can be processed. To this end, an efficient system using
S3-hosted data would only need limited local storage and a well-
designed job management system that makes use of batch job
information to proactively retrieve S3-stored data while jobs are
still in compute queues. Where pre-fetching is not an option (e.g.,
for interactive computations) the access performance to individual
data items may prove to be the driving factor for observed
performance.

5.3 Subsequent Pages
The assessment of the security functionality should start with an
evaluation of the risks involved. S3 presents the traditional risks
that outsourced data storage systems present: permanent data
loss, temporary data unavailability, loss of data confidentiality,
and malicious data modifications are of concern. Some risks are
mitigated by the security scheme S3 uses (e.g., transport privacy
can be provided by using TLS) while others can be mitigated by
user-level solutions, such as cryptographically signing data stored
in S3. On the other hand, S3 provides no check-pointing or
backup facility for recovering data that is accidentally erased or
modified.

S3 charging scheme introduces an additional risk: direct monetary
loss. This risk is magnified by the fact that S3 does not provide a
solution to limit the amount users stand to lose in case of an

attack. For example, an attacker could repeatedly transfer data to
or from an S3 bucket to cause direct monetary loss to the owner
of that bucket.

S3's security model has the important merit of being simple.
Simplicity however, comes at the price of limited support for
large, collaborative applications that aim to control access to data
resources offered by multiple participants. We summarize these
limitations below:

• Crude access control scheme: S3 access control solution
based on access control lists does not scale well to large
systems with thousands of users and million of entities.
Additionally, S3 supports only a limited number of access
rights (e.g., there is no write control at the individual object
level but only at the bucket level) and the access control lists
are limited in size (100 principals).

• Lack of support for fine-grained delegation: Even
moderately complex data-intensive scientific collaborations
today make use of delegation for efficient data management
and processing. For example, users delegate access to
specific datasets to programs that operate on their behalf on
remote computers. Higher risks involved by science data on
S3 (as a result of direct monetary loss risks) make proper
access control delegation models even more necessary. S3,
however, lacks any support for delegation which is a major
obstacle to adopt S3 for large-scale science collaborations.

• Implicit trust; no support for non-reputability: The
implicit assumption is that users trust S3 entirely, and thus
S3 does not provide unforgeable ‘receipts’ for transactions
(signed certificates) that a user can present to a third party to
demonstrate that a specific data item had been stored.
Additionally, the invocations recorded by S3 and presented
in the audit trail are not digitally signed, either by the users
or by Amazon. This makes the audit trail repudiable. Worse,
given that Amazon security solution has the essential
properties of shared secret scheme, it is impossible to
provide non reputability.

• Unlimited risk: S3 does not offer any support for user-
specified usage limits, (e.g., quotas per bucket owner or per
delegated principal). As a result, the potential damage that an
attacker (or, worse, simply a buggy program) can produce is
limited only by the ability of the attacker to access S3 data
and by the limit on the user’s credit card.

Some of these risks can be mitigated by using S3 as the backend
of a storage system, and having users connect to a front-end
running on Amazon's EC2 service. The front-end would be
responsible for individual account management, fine-grained trust
decisions, and billing.

6. RECOMMENDATIONS FOR NEXT
GENERATION STORAGE UTILITY
SERVICES
S3 has attracted a large user base due to its simple charging
scheme, unlimited storage capacity, open protocols, and simple
API for easy integration with applications. Yet, we believe that
the current S3 design needs to be improved before it can provide
durable storage. Nevertheless, it is important for the scientific

community to discuss the applicability of utility storage systems
such as S3 for three reasons.

First, storage utilities have proven popular for consumers and
small businesses and continue to evolve rapidly. Reinvigorating
the discussion on optimal storage utility design will affect the
design of future storage utility services that target the needs of the
science community.

Second, computing centers have changed focus from supporting
isolated projects to supporting entire user communities grouped
around common scientific goals (e.g., TeraGrid [19]). Providing
storage as a utility is more apt to support user collaboration and
integration with applications and fits the mandate of existing
computing centers and large scale cyber infrastructure
deployments.

Finally, data-intensive scientific applications continue to spur-in
new production-mode collaborations. As such, economies of scale
become a significant incentive for both storage consumers and
providers to adopt the utility model.

The rest of this section discusses possible architectural and
functionality changes to improve the suitability of S3 to support
science applications.

6.1 Unbundling Performance Characteristics
Utility services should aim to provide comparable performance
with in-house services and exploit economies of scale to reduce
costs. Yet, we estimate that, today, while S3 may offer similar
performance to an in-house service, it does not offer a compelling
cost advantage.

We believe that the solution to reduce storage costs is to
understand and respond to application requirements. More
specifically, S3 bundles at a single price point three storage
system characteristics: infinite data durability, high availability,
and fast data access. Many applications, however, do not need all
these three characteristics bundled together – thus ‘unbundling’
by offering multiple classes of service targeted for specific
application needs may lead to reduced costs and thus lower utility
prices. The rest of this section presents additional arguments that
unbundling can reduce costs for specific classes of applications
and argues that it is technically feasible.

Unbundling could reduce costs. As Table 2 shows, each of the
three salient properties that characterize a storage system (data
durability, availability, and access-performance) requires different
resources and engineering techniques. For example, Amazon
could offer a class of service that offers durability but data may be
unavailable for up to 7 days every month; such a service might be
cheaper for Amazon than its current offering.

Unbundling can be exploited by applications. A significant set of
services requires storage that offers high-performance only on one
or two of the above performance directions (Table 3). For
example, an archival storage service that puts a premium on
durability can survive limited periods where data is not available.
In DZero, the large share of data that is infrequently used could
be well stored on tape to reduce costs. Similarly, distributed data
caching demands fast access but not high durability.

Table 2. The resources needed to provide high performance
data access, high data availability and long data durability are

different

Characteristics Resources and techniques to provide
them

High-
performance
data access

Geographical data (or storage) replication
to improve access locality, high-speed

storage, fat networks

Durability
Data replication - possible at various
levels: hardware (RAID), multiple

locations, multiple media; erasure codes

Availability

Server/service replication, hot-swap
technologies, multi hosting, techniques to
increase availability for auxiliary services

(e.g., authentication, access control)

Table 3. Application classes and their associated requirements

Application
class Durability Availability High access

speed
Cache No Depends Yes

Long-term
archival Yes No No

Online
production No Yes Yes

Batch
production No No Yes

In scientific research the cost associated with losing data depends
on whether the data is raw data or derived data obtained from raw
data through processing. Derived data can always be reproduced
as necessary based on archived raw data. Users could be allowed
to choose the best cost tradeoff between storing derived data on
highly durable storage and storing it on cheaper, less reliable
storage that might result in data loss and the need to recomputed
lost data as necessary.

We note that a possible argument against multiple classes of
service is that they may introduce nontrivial management costs at
the utility service provider (in terms of resource management,
billing clients, and educating application developers to harness
them). In fact, a similar argument has been made regarding the
introduction of quality of service in the Internet [20] [21]. While
we agree that these costs can be nontrivial, we believe that future
research in this area can reduce these costs through automation
and make differentiated storage services through unbundling and
appealing alternative.

6.2 Increasing Flexibility
Our S3 experience allows us to recommend primitives that will
extend the flexibility offered by novel storage infrastructures that
cater to the demands of data-intensive science applications. These
recommendations could also prove valuable to large Grid
deployments like TeraGrid or WestGrid [22] which are moving
towards offering infrastructure services for science, similar in
goals to those offered by Amazon’s S3 and EC2 to commercial
applications.

6.2.1 Enhanced security functionality to support
complex collaborations
Our analysis reveals that the simple security model offered by S3
does not support complex collaborations and exposes users to
major risk. We believe that two key components are required: the
ability to limit potential damage in the case of an attack and the
support for fine-grained delegation.

6.2.2 Additional functionality for better usability
A number of additional service functionalities would significantly
simplify integration with applications. Three main such
functionalities we recommend are (1) metadata based searches;
(2) ability to rename objects; and (3) ability to mutate access
control lists [23].

7. SUMMARY
S3 was not designed for the science community. Indeed, the
science community has specific requirements and extreme
challenges regarding data usage. As such, this paper should be
read not as a critique of S3, but as a set of recommendations to
any storage provider that would like to serve this community.

The contributions of this paper are in evaluating S3 as a black box
and in formulating recommendations for integrating S3 with
science applications and for designing future storage utilities
targeting this class of applications. Costs can be reduced by
exploiting data usage and application characteristics to improve
performance, and, more importantly, by introducing user-
managed collaborative caching in the system. In effect, our
recommendations are driven by S3 billing structure: we
recommend using S3 for the costly tasks of providing high data
availability and durability (where costs are driven up by
specialized hardware and nontrivial engineering effort) and
employ caching at the edges of the system to reduce the access
volume when the usage patterns allow. These recommendations
may not only reduce the S3 bill but will also significantly
improve performance due to a cacheable workload specific to
these collaborations.

We identify application requirements that are not currently
satisfied by S3. While S3 successfully supports relatively simple
scenarios (e.g., personal data backup) and can be easily integrated
in the storage tier of a multi-tiered Web application, its existing
security functionality is strikingly inadequate to support complex,
collaborative environments like the ones in today’s scientific
collaborations. More precisely, S3 lacks in terms of flexible
access control and support for delegation and auditing, and it
makes implicit trust assumptions. This lack of functionality is
troubling when direct financial loss is at stake.

Finally, we observe that S3 bundles at a single pricing point three
storage system performance characteristics: infinite data
durability, high availability, and fast data access. We believe that
unbundling these characteristic by offering multiple classes of
service targeted for specific application needs will reduce the
storage utility price.

8. ACKNOWLEDGMENTS
We thank Ayodele Onibokun for his early efforts invested in this
project and Abullah Garaibeh for feedback. We acknowledge the

financial support for the Amazon service expenses from the
Department of Computer Science and Engineering at University
of South Florida and the Center for Research on Computation and
Society at Harvard University's School of Engineering and
Applied Sciences. We have used the DZero application traces
gracefully provided by the DZero team at the Fermi National
Laboratory.

9. REFERENCES
[1] The DZero Experiment. http://www-d0.fnal.gov
[2] The Large Hadron Collider. http://lcg.web.cern.ch/LCG
[3] The Stanford Linear Collider.

http://www2.slac.stanford.edu/vvc/experiments/slc.html
[4] The Compact Muon Solenoid at CERN.

http://cmsinfo.cern.ch
[5] Amazon Web Services. http:/s3.amazonaws.com
[6] PlanetLab Consortium. http://planet-lab.org
[7] Garfinkel, S. 2007. Commodity Grid Computing with

Amazon’s S3 and EC2, Login, USENIX, February 2007.
[8] Kirkpatrick, M. 2006. Amazon releases early info on S3

storage use, http://www.techcrunch.com/tag/s3, July 2006.
[9] Bezos, J. keynote talk at Web 2.0 Expo, April 2007.
[10] Krawczyk, H., Bellare, M., and Canetti, R. 1997. HMAC:

Keyed-Hashing for Message Authentication, IETF - Network
Working Group, 1997.

[11] W3C, Soap Version 1.2, June 2003,
http://www.w3.org/TR/soap/

[12] Fielding, R. T. 2000. Architectural Styles and the Design of
Network-Based Software Architectures, PhD Dissertation,
University of California, Irvine, 2000.

[13] BitTorrent. http://www.bittorrent.com
[14] Doraimani, S. 2007. Filecules: A New Granularity for

Resource Management in Grids, Masters Thesis, University
of South Florida, April 2007.

[15] Iamnitchi, A., Doraimani, S., and Garzoglio, G. 2006.
Filecules in High-Energy Physics: Characteristics and
Impact on Resource Management, 15th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), June 2006.

[16] T. Oreily. REST vs. SOAP at Amazon.
http://www.oreillynet.com/pub/wlg/3005?wlg=yes

[17] Paxson, V. 1996. End-to-end routing behavior in the Internet,
Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communications, vol 26.4, ACM SiGCOMM
Computer Communication Review, pages 25-38, ACM
Press, New York, August 1996.

[18] Garfinkel, S. 2007. An Evaluation of Amazon's Grid
Computing Services: EC2, S3 and SQS, Technical Report
TR-08-07, School for Engineering and Applied Sciences,
Harvard University, MA. July 2007.

[19] TeraGrid. http://www.teragrid.org

[20] Odlyzko, A. M. 2000. The Internet and other networks:
Utilization rates and their implications, Information
Economics & Policy, vol. 12, 2000.

[21] Odlyzko, A. M. 1999. The current state and likely evolution
of the Internet, in Proceedings of Globecom'99, pp. 1869-
1875, IEEE, 1999.

[22] Western Canada Research Grid. http://www.westgrid.ca

[23] Ripeanu, M. and Iamnitchi, A. 2007. S4: A Simple Storage
Service for Sciences, 16th IEEE International Symposium on
High Performance Distributed Computing (HPDC),
Monterey Bay, CA, June 2007.

[24] Palankar, M., Onibokun, A., Iamnitchi, A., and Ripeanu, M.
2007. Amazon S3 for Science Grids: a Viable Solution?,
poster, 4th USENIX Symposium on Networked Systems
Design & Implementation (NSDI'07), April 2007.

