
Evaluating Intrusion Detection Systems without Attacking your
Friends: The 1998 DARPA Intrusion Detection Evaluation

R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf, K. R. Kendall,
S. E. Webster, D. Wyschogrod, M. A. Zissman

Abstract

Intrusion detection systems monitor the use of computers and the network over which they communicate,
searching for unauthorized use, anomalous behavior, and attempts to deny users, machines or portions of
the network access to services. Potential users of such systems need information that is rarely found in
marketing literature, including how well a given system finds intruders and how much work is required to
use and maintain that system in a fully functioning network with significant daily traffic. Researchers and
developers can specify which prototypical attacks can be found by their systems, but without access to the
normal traffic generated by day-to-day work, they can not describe how well their systems detect real
attacks while passing background traffic and avoiding false alarms. This information is critical: every
declared intrusion requires time to review, regardless of whether it is a correct detection for which a real
intrusion occurred, or whether it is merely a false alarm.

To meet the needs of researchers, developers and ultimately system administrators we have developed the
first objective, repeatable, and realistic measurement of intrusion detection system performance. Network
traffic on an Air Force base was measured, characterized and subsequently simulated on an isolated
network on which a few computers were used to simulate thousands of different Unix systems and
hundreds of different users during periods of normal network traffic. Simulated attackers mapped the
network, issued denial of service attacks, illegally gained access to systems, and obtained super-user
privileges. Attack types ranged from old, well-known attacks, to new, stealthy attacks. Seven weeks of
training data and two weeks of testing data were generated, filling more than 30 CD-ROMs. Methods and
results from the 1998 DARPA intrusion detection evaluation will be highlighted, and preliminary plans for
the 1999 evaluation will be presented

Introduction

To date, intrusion detection research has lacked a corpus of data that could serve as the
basis for system development, improvement and evaluation. To meet that need, we have
developed a corpus of data for the DARPA 1998 off-line intrusion detection evaluation,
using a network and scripted actors to loosely model the network traffic measured
between a US Air Force base and the internet. This year’s data includes normal network
traffic for many different Unix services and protocols, while future years will address
networks populated with a mix of Unix and Windows/NT machines. Although the
evaluation is primarily intended to improve the state of intrusion detection research, the
unique combination of normal data, attack data, and labeled sessions has also prompted
evaluation of fielded commercial and U.S. government systems.

Methodology of Formal Evaluations

To evaluate formally the utility of an intrusion detection system, one must know both the
probability of detecting an attack (Pd) and the probability of issuing a false alarm (Pfa).
Most current intrusion detection systems report a variety of warning levels and allow

system administrators to adjust an alert threshold that effectively trades off Pd for Pfa. By
lowering the threshold, an administrator can discover more attacks, but will likely have to
see more false alarms. Similarly, an administrator can raise the threshold to reduce false
alarms, but this will also likely cause the system to miss some additional attacks. By
knowing these two values (Pd and Pfa) and how they change with changes in the
threshold, one can plot a receiver operating characteristic (ROC) curve [1]. Knowledge of
the entire ROC curve allows the user to set thresholds to match the amount of available
effort and desired level of security.

Most systems also provide some degree of local configuration to allow experts to
customize the system to a given environment. To avoid learning how to run and
customize each intrusion detection system, and to reduce the time required to perform the
evaluation, we elected to perform an off-line evaluation of all systems. In this type of
evaluation, two sets of data are provided to the participants. The first set is training data,
which contains sessions and an indication of whether the session is a normal or attack
session. Expert users or system developers configure their systems to achieve the highest
detection rates and the lowest false alarm rates. In the second data set, only the network
sessions are provided, and it is the job of the participant to declare whether the session is
a normal or attack session. These declarations are returned and scored by the MIT
Lincoln Laboratory team.

A second on-line evaluation is being performed in tandem with our effort. In that work, a
subset of systems we are evaluating will again be tuned using our training data. The
systems will be tested in real-time using tools and techniques the two research groups
have cooperatively developed.

Creating Data that can be Widely Distributed

Three different approaches were considered to create the data used in this evaluation:
collect operational Air Force network traffic, occasionally attacking a few acceptable
machines; sanitize operational traffic, inserting attack sessions after the fact; and
synthesize both normal and attack sessions on a private network.

The first option was quickly rejected. Although data collected from a functioning
network would be (by definition) real data, no director of an operational base or business
wants to have his infrastructure attacked, even to establish how well various systems can
defend against that attack. Furthermore, there is substantial personal, private and sensitive
information such as e-mail, web access patterns, passwords, and information about the
network configuration that could be gleaned from the distributed data. This information
could expose vulnerabilities in the real network. Finally, it is difficult to be certain that
the collected traffic, which we would label as normal, does not include attacks from
outside crackers.

To avoid attacking the operational network, and to safeguard sensitive information, we
next considered sanitizing real data and inserting attacks into the traffic after the fact.
Although it seems reasonable to change passwords, substitute e-mail, change web
addresses, and modify host IP addresses in real collected data, in practice it is extremely
difficult to do this reliably. Furthermore, the amount of traffic recorded implied that this
sanitization process would be automated with only occasional spot checking, so the

likelihood of accidentally releasing sensitive information seemed significant. Finally,
inserting attacks into operational data might introduce artifacts. This, combined with the
realization that some unknown attacks might be present in the collected data led us to
investigate a third option.

To safeguard sensitive information, to prevent the introduction of artifacts, and to ensure
reliable labeling of sessions, the network traffic of an entire Air Force base was
simulated. To establish which services are in use and the relative traffic levels, we began
by installing a network traffic sniffer on a local Air Force base, and recorded the amounts
and types of services used. That effort revealed that traffic included SNMP, SMTP,
telnet, FTP, HTTP, POP, domain, time and many other services and protocols. This
traffic is consistent with a business where personnel send mail messages, transfer files,
and access databases and information servers.

A local, isolated network was established and split into two with a router in between.
(See Figure 1.) The inside simulated a base consisting of tens of machines and many
hundreds of users, and the outside simulated the thousands of machines and the many
users who make up the internet. To simulate many machines, a modification was made to
the LINUX kernel [2]. To populate the base, classes of normal users and their work were
identified: some people were programmers, others were secretaries and system
administrators, and others were managers. Scripted actors were developed to simulate the
work of each of these: the manager read and responded to mail, the secretary wrote and
formatted memos, the programmer wrote, compiled and tested programs, and the system

SimNet

Router

Solaris
Sniffer Linux

Web
Gateway

Linux
Workstation

Gateway

Outside

Solaris
Audit
Data

SunOS

Solaris

Linux
Workstation

Gateway

Linux

Inside

Figure 1. The Simulation Network. Inside computers simulate an Air Force
base, while outside computers simulate the internet. Gateway computers
simulate many hundreds of workstations. Named computers have set roles and
fixed ip addresses, while unnamed computers are set to different ip addresses as
the simulation proceeds.

administrator installed software, responded to questions, and repaired the systems. In
addition, real people sent requests to a live system administrator who responded and
repaired damage caused by scripted and real attackers.

Attack scenarios were developed for different attackers. One was a spy who collected
information and left a back door; another was a novice hacker who broke in and then left,
and a third was a malicious employee. Attacks included surveillance/probing attacks,
denial-of-service attacks, remote-to-root attacks, and user-to-root attacks. Most were old
attacks, but some were newly developed for this exercise. The attacks targeted SunOS
systems, Solaris systems, Linux systems and the Cisco router, and varying effort was
used to hide the attacks, consistent with the level of expertise of the attackers. Some of
these attacks were scripted, although many required human intervention.

Figure 2. Traces of connections occurring during one simulation day. In this figure
each service is assigned a vertical block in which sessions are indicated with the
greater-than sign (>) connected via a line to a less-than sign (<). Each session is plotted
in the block with a slight vertical offset from the previous one. More heavily used
services appear as dark, vertical bands, while less heavily used services appear as
diagonal bands. Several different attacks occurred on the depicted day, and are
indicated in the figure’s overlay.

FORMAT - 1

FORMAT - 2

SMURF

LOADMODULE ROOTKIT (tftp)

PORT
SWEEP

NEPTUNE
(synflood)

Sample Data

Six weeks of training data and two weeks of test data was provided to each participant.
Distributed data contained system dumps, periodic output from the Unix ps command,
audit data from the Solaris Basic Security Module, and sniffed network traffic. For the

training data, participants received list files to indicate whether a session was a normal or
attack session, and if an attack, the type of attack performed. After participants trained
their systems, two additional weeks of data was distributed. For the test data, the
participants’ systems labeled each session as a normal or an attack session.

An example of the generated traffic is displayed in Figure 2. During each simulated 22-
hour day, traffic for a variety of services and protocols is generated by scripted and
human actors. Traffic is heaviest during the day, when bases are the busiest. During the
day the actors scan the world-wide web, (http), send mail (smtp/pop), transfer data (ftp),
enquire about other users (finger), log into information servers (telnet) and have their
computer systems stay synchronized to a master clock (time). The day shown in Figure 2
has several examples of attacks: a network mapping attack (Port Sweep), two denial-of-
service attacks (Neptune, Smurf), and two user-to-root attacks (format, rootkit) [3]. In the
case of the format attack, the attack began in one session and ended in a later session
using a different service.

Conclusions

We have succeeded in simulating a large operational network and automated the
production of both normal and attack traffic. Evaluations of intrusion detection systems
must be done in the presence of both to establish the performance of an intrusion
detection system. Without normal traffic the total number of false alarms generated by
the system cannot be known, and without this knowledge the cost of maintaining the
system is not known.

Initial evaluation of a simple keystring-spotting system showed poor results. Although
this system can detect all attacks executed in the clear, it has an extremely high false
alarm rate. Those who use this technology, currently deployed in many commercial
intrusion detection systems, will spend substantial time evaluating sessions for which an
attack did not occur.

Ten systems are currently being evaluated, and preliminary results indicate that these
next-generation systems are already significantly better than the simple keystring-
spotting system. We anticipate that this improvement will continue as we produce new
and more complex data sets in the years ahead.

References

1. Swets, J.A., The Relative Operating Characteristic in Psychology. Science, 1973.
182: p. 990-999.

2. Durst, R.S. and Champion, T. G. Packet Address Swapping for Network
Simulation, US Patent Application, 1998.

3. CERT, Computer Emergency Response Team Advisories, 1998, www.cert.org.

