
DRAFT:
The Story of the Write Once File System

Simson L. aarllnkel
IRIS

Brown University

@ Auguat 1, 1087

Abstract

Thi. pap"r. d ... crib ... two file sy.temo which were
designed for use with write-once media: The
Compact Disk File System (CDFS) and the Write
Once File System (WOFS). CDFS was d"siglled at
the MIT Media Laboratory during the summer of
1985 and wa.s successfully used to master five
CDROM disk •. Althuugh CDFS WaS intended for
use with write-once media, several design flaws
prevented this possibility. The Write Once File
System, desiglled during the summer of 1987,
corrects the flaws of CDFS.

This paper alBo describes an application
program written using CDFS which exports CDFS
file systems to remote computers via a high speed
network and Sun Microsystem's Network File
System (NFS) protocol.

This paper is divided into chapters. Each
chapter designs a particular project involving one
of the above file systems. For the purpose of
reprinting, irrelevant chapters may be omitted.

The research described in this paper performed
at the MIT Media Lab was made possible by a
grant from IBM.

J. Spencer Love, formally of MIT Information
Systems, contributed significantly to the design of
CDFS.

1 Introduction

In ~pring HIRI), I was @mployed as an
undergraduate researcher at the MIT Media
Laboratory's Electronic Publishing Group.! That
spring, the laboratory received a Sony CDU·1

• prototype CDROM reader. Walter Bender, my
research advisor, asked me if I would like to
experiment with the unit.

1

For many years, the Electronic Publishing
Group (forma.lly called the Architecture M .. chine
Group) hrul. been interested in optical storage
devices, in particular optical video disks, both
because of the l .. rge amount of available storage
and the relatively low access times when compared
with other media, such as videotape.2

The CDU-l's minimal documentation
indicated that the drive could read 2K blocks from
a "CDROM" disk, each which was identified hy a
minute, second and block number. We tried an
audio disk in the player and discovered that audio

1 An innovative program at MIT, "UROP' (undergradu­
a.te research opportunities program), alJows undergraduates to
participate in research projects in the Institute'. departments
a.nd 16boro.toneo.

:JOne of the Group's ea.rlier projects, "Aspen," allowed a.
person sitting in front of a touch sensitive monitor to "drive"
a simulated car around the .treet. of Aspen, Colorado. To
perform the demo. over 20,000 different views of the city had
to be stored on a video disk. This was one of the first uses of
interactive video di.ks. Other project. by the group included
the use of write-once video disks in anima.tion.

WOFS

disks were not in the CDROM format. The test
disk which Sony had been provided contained
approximately 10MB of test patterns on it; the rest
of the disk was blank. "I wish they had asked me
what to put on the rest of the disk," a graduate
student said to me. "I would have given them
pictures."

We soon realized that in order to use our new
CDROM player, we were going to have to make our
own disk. The next question was how to arrange
the information on the disk. In Spring 1985,
neither Digital's UNIFILE CDROM format nor the
High Sierra standard existed. Such standards were
under development at the time, but we were largely
ignorant of such efforts. Without pre-defined
standards, the author decided to develop his own.

A simple way for us to have used our CDROM
player would have been to master a CDROM that
contained an exact, block-for-block disk image of
an existing file system. With such a di.lc .url a
block level device driver, we could read the disk as
a read-only file system on the same computer from
which the data was originally "TP.at"rI. Other
computers could read the disk by using a suitable
conversion library or through some sort of
operating system inrlependent network file system
such as Sun Microsystem's NFS.

The problem with the disk block image
approach was that it would not be extensible to
write-once optical devices as they became available,
and the group'. experience with video disk. led us
to believe that write-once devices would soon be
available. Although applications such as
encyclopedias and maps would work fine with large
read-only databases, other projects which we were
interested in, such as personalized newspapers,
would not. "It'. much mure interesting to think
about what you can do with a. 300MB database
that is constantly growing," I told Dr. Bender,
"than to think about all the ways to access 3UUMB
of static data.. Another application I was interested
by Was the possibility of using .. write-once optical
disk system as a personal, portable mass storage
system for coherent use with the wide variety of
computers available at MIT.

-
Simson L. Garfinkel palSe 2

Over the next six months, under the
supervision of Dr. Bender, I developed a file system
for use with Write Once Media. At first, the effort
consisted largely of late-night design meetings with
J. Spencer Love, then a system programmer at
MIT Information Systems, trying to devise a way
to efficiently store and retrieve information from a
write-once media. By the middle of the summer I
had started on the file system's first
implementation, which first became operational on
August 15, 1985.

Since write-once drives and media were not
available to use at the time, I developed the file
system using a write-once simulator. The simulator
presented the file system implementation with th"
appearance of a write-once device using a file
resident on a magnetic disk. When we started
mastering CDROMs later th~.t year, we discovered
that the simulator system doubled as an excellent
mastering system: the simulator file, copied to a
nine-track magnMic tap .. in ANSI format, was all
that was required by 3M corporation to master our
CDROMs.

1.1 Design goals

Our two primary goals in designing the file system
were:

1. That the file system operate with the same
level of performance with any size of
write-once media, whether it be a 50MB
optical card, a 650MB write-once COROM, or
a. 10GB jukebox or optkal plAtters, IJ.ml !ll .. !
this performance be comparable to
performance obtained with magnetic media.

-and-

2. That performance of the file system would not
degrade as a disk became filled with files and
directories.

Since we didn't have a write-once device
during the design process, we decided that we had

WOFS

to make as few assumptions about the physical
llil.ture of write-once media as possible. The only
assumptions that we made were that sequential
blocks of data could be written to the write-once
device, that the block size used by the device would
be a constant from the first block to the last
(although no specific block size was assumed), that
blocks once written could be rt'.ad in any order, and
that the write-once hardware could determine
whether a block had been written or was virginal.

We did not assume that blocks could be
invalidated or destructively written after the initial
write operation. We further did not assume that a
media would be consistently mounted on the same
operating system or computer: that is, we wanted a
p.ll_on using our file system to be able to freely
move an optical platter from one computer to
another, even if the two computers used different
operating systems.

This first version of the write-once file system
was finished ill September 1985 and was called the
Compact Disk File System (CDFS), it's name
indicating that it was designed primarily for use
with comp ... cL di.ks (In 1911.:l, the author had
foolishly hoped that hardware vendors would be
supplying consumers with devices which would be
... hle to record in the audio CD and CDROM
format.) The implementation was written in
porta.ble C code and operated without modification
on Digital Equipment Corporation's VAX series of
computers under UNIX, Sun Microsystem's
workstations, and on IDM Personal Computers.

During the following year and a half, CDFS
was used to master four CDROMs at the MIT
Media Laboratory and one CDROM at Brown
University's IRIS project.3

In December 1986 and January 1987, I
developed a read-only CDFS implementation, the

3The four MIT CDROMe consisted. of an initial test disk,
• disk containing a copy of the CIA'. World Databank II and
associated information, and two disks of encoded motion se.­
quences for the group'. "Movie'. of the Future" project. The
IRIS disk consisted of the Thesaurus Linguae Graecae Da.ta
Bank (aU remaining greek document. from the ancient world)
and a.sociated index files.

Simson L. C",rfinkcl page 3

Micro-CDFS, to prove to Dr. Bender that it could
be written in less than 10K of object code, hence
the name. (The actual MCDFS implementa.tion
was less than 5K of object code and provided
complete emulation for all of the UNIX system
calls to access files in a read-only fashion.)

In the Spring of 1987, several research groups
at MIT acquired write once devices and an initial
attempt was made to use the CDFS. At this time,
the author discovered that a basic assumption
made by the CDFS implementation-that write
opera.tions to the optical media were completely
reliable-was invalid. Design of a new version of
CDFS (later named WOFS (Write Once File
System)) with the assistance of James Anderson of
MIT's Project Athena was commenced at that
time, but final implementation was delayed until
the author finished his undergraduate thesis' and
graduated from MIT.

In June 1987, I was employed by the IRIS
project at Brown University to write a program to
allow the CDllOM mastered in the CDt·S format
to be accessed via. Sun Microsystem's Network File
System. Bec,,:use the project was designed to access
CUKOMs, the ptogram \CDFSD - Compact Disk
File System Daemon) only implemented the NFS
procedures necessary for read operations. The
read-only NFS server can be operated on any BSD
4:2 (or later) UNIX computer which supports sun's
portmapper RPC protocol and has a device driver
capable of reading blocks from a CDROM player.
It is currently in use with an IBM RT fPC
workstation.

In July and August 1987. the author
completed the development of WOFS.

• Radio Reswrch, McCartJiVi,m, and Paul F. Lazors/eld,
Simson 1. Garfinkel, undergraduate thesis, M chusett. In­
stitute of Technology, June 1987.

WOFS

2 The Compact Disk File
System

2.1 How CDFS works

cnFS organizes write operations to the media. as "
stream of sequential block writes. No blank blocks
are left in the anticipation of future block writes.
CDFS' approach divides a disk into two discrete
regions: one in which blocks have been recorded
and one in which they have not. The file system
implemE!'ntation kQ9ps record of where the dividing

point between these two regions is by locating the
last written block and maintaining that location
during th .. cour." of all op"rations.

When the implementation mounts an optical
disk it first r~"n. t.he first block on the disk which
cont;Uns a special block called an End Of
Transaction (EOT) block. The EOT contains, in a
fixed byte,oM"r rApr ... "ntation, an 8 byte flag
which identifies the disk as a CDFS·format disk
l:lnd. CQutn.ino other irnportAont in£v'[llla.tlvu. (Th'tl

full CDFS EOT specification i. pr,nted in
Appendix A.1)

The End Of 'Transaction block i. so call<!d
because it is the last block written to the disk when
the disk is dismounted. The disk blocks between
snrN",.i"" EOTs record all changes made to the file
system resident on the disk for a particular use
session (called transactions).

After locating the first EOT on the disk, the
implementation next locates the last written block
on the diskS which should be another EOT, the I""t
EDT written to the disk.

The EOT belongs to .. claso of objects called
file system structures. File system structures are
blocks of data, recorded by the :file system
implementation on the disk, which are decoded by
the file system implementation and used by the
implementation to locate and retrieve data which

'Locating the last written block on the disk is accomplishetl
by a binary search across the media.

SimsOll L. GarfinkeJ pa.ge 4

had been previously stored. Other file system
structures include Directories, File Headers and
Directory Lists.

File system structures contain pointers to
other :file systems structures on the same media.
These pointers are called c:dbloc:k pointers, and
reference a particular block number and offset
within that block. By allowing cdblocll: pointers to
reference exact bytes, the CDFS specification allows
multiple :file system structures to be packed within
the same logical block, although this possibility was
not exploited in our first implementation.

The most recent EOT on the disk contains a
pointer to the most recent Directory List on the
disk. The Directory List contains an array in which
each element of the array identifies a directory on
the disk and has a cdblocll: pointer to the most
recent version of that directory. (The full CDFS
Directory List specification is presented in
appendix A.2.) Similarly, each directory on the
disk contains a cdblocll: pointer to the most recent
version of every file it contains.

The Directory List is the key to an efficient
implementation of a modifiable hierarchical file
system on a write-once disk. Since CDFS stores
both :files and directories on the same write-once
media, it is necessary to rewrite a directory
whenever a file contained within it is added,
deleted, or modified. The Directory list eliminates
the necessity of having to additionally rewrite all of
the containing directories. Since the Directory List
contains a cdblocll: pointer to the most recent
version of each directory on the disk, directories are
located via the directory list. rather than from
pointers in their containing directories. When the
location of a directory on the disk changes (as
happens when the directory's contents arc
changed). it is necessary only to rewrite the
Directory List to still retain a pointer directly to
the most recent version of the directory. Withont II
Directory List, a modification to any sub-directory
within the file hierarchy would require rewriting
every directory above the modificAt.ion, including
the root directory, which would greatly increase the
overhead of the file system. The Directory List is

WOFS

designed to be compact to further decrease storage
requireruent:s.

In practice, write operations to the optical disk
are hatched in group. caJled Tran.actions. During
a Transaction, new files are written to the disk as
they are created, but changes to their containing
directorie. and th" Dir",tory List are buffered In
memory. At the close of the Transaction, all
modified directories, the Directory List, and a new
EOT a.re writ tell and the disk can be removed from
the drive. In the event of an interrupted
Transaction (such as a power failure or removal of
the disk frum the drIve before dismounting), the
File Header which is written with each file contains
enough information to reconstruct the directories,
Directory List, and EOT which had not yet been
written.

2.2 Two Example Transactions

Although the CDFS standard does not specify the
order in which Transactions should occurs, most
implp.mAntations will follow a prOCGSS simila.r to

example outlined bellow.

Tn this Py;\.mplp/ t.h~ writl:!'~ont:Q m9dia ~tarh

blank. In the first Transaction, the two files, life.c
and wheel.c are written and placed in the root
directory. In the second Transaction, a new version
of the file life.c is written. This example
Transaction is intentionally simple.

As defined in the standard, the first block on.
the disk must be an EOT. During the course of the
first transaction, the two files are written to the
disk. When the transaction is completed, the
CDFS implementation writes a new copy of the
root directory to the disk, a. new Directory List,
and a new EOT. The EOT contains a pointer to
the Directory List, which contains a pointer to the
root directory, whkh contains pointen to each of
the files. The state of the disk at the completion of
the first transaction is depicted bellow:

The following blocks were written on the first
transaction:

0

....... 1

,
r'" 3

i"<' ,
::;: ,
~ •

(bl.Db /ollow)

Sim.Oll L. Gamnhl

tha' EOT on disk (,uperblof;k)

"lif«.c" IlI.he.d,n and contenl.

page 5

""h •• l.e" tileh • .,der and conte.h

root diree'ory

directory Ii,.

i .. i EOT on di.k

Figure 1: Direct Read After Write disk after a sam­
ple transaction

o The first block of a CDFS disk contains an
EOT, which identifieo the di.k as a. CDFS disk.
This block also contains the name of the disk's
owner, the time of the disk's creation, the
name of the .ite which created tll" CD and
other interesting information.

1 The file li/e.e is stored contiguously, preceded
by its File Header. Since the File Header
contains a cdblock pointer to the contents of
thP filA, th .. Fi]", H""d". could equally well b"
written after the file. The file begins in the
same block as the header and extends for two
block •.

3 The file wheel. e is the second file on the CD,
stored as file header followed by file contents.
The file and its contents fit within the single
block.

4 The root directory follows. The directory
contains a cdblock pointer to each file within
it. cdblock pointers are drawn as arrows in
this example.

5 The Directory List follows the directories. It
contains a cdbloc:k pointer to each directory
on the disk.

6 An EOT is the last block written to the CD. It
contains a cdblock pointer to the Directory
List.

The section transaction takes place
independently of the first. At the start of the

WOFS

•
• ,

- ,
•
•
•

r'" 1

•
•

~ ,.
C

11

12

(bhutk. foUow)

1
J.

l-

f--

I--

"HI .. ,." 111 <1 " , ... t.

Uwheel.c" &lehlilader 6D.d con ten',

EOT

roo' directory (•• eGad vfl,ian)

dir.etory lilll. (.eeond venion)

1 ••• EOT on ditk

Figure 2: Direct Read After Write disk after a second
sample transaction. Arrows on the left hand side
trace pointers from the EOT to the most current
version of each file. Arrows on the right hand side
trace pointers to previous versions.

second transaction, the implementation reads the
first and the l""t block. on the disk. A new vee"ion
of the file life.c is written to the disk and the
Transaction is ended, which causes a new root
directory, Directory Li.t .. ud EOT to be written.
After the second transaction a schematic view of
the optical media would looks like figure 2.

While no blocks on the disk have been
changed, the last EOT commences a chain of
pointers which points now to the newest version of
each file, because the definition of "the last EOT"
has changed.

The blocks that were written on the second
transaction include:

7 The first file written on the second transaction
is the updated v"r.ion of life.c. Th" new fil"
header of li/e.e contains a pointer to the
previous version (shown on the right). The
new veT.ion of life.c is thr<lO blocks long.

10 The new version of the root directory contains

Simson L. Garfinkel page 6

cdblock pointers to the most current version
of each me within it. Note that directories can
(and often do) reference files which were
written on previous Transactions.

11 The Directory List is written after the root
directory. It contains a pointer to the most
recont vorsion of that directory.

12 The EOT block is written last. It contains a
pointer to the most recent Dir""tory List. It
also contains a pointer to the previous EOT.

2.3 Design choices made in CDFS

The design choices made in developing the CDFS
were based both upon the desire for the file system
to efficient and for the file system to be usable in an
environment of heterogeneous operating systems,
hardware vendors and administrative policies. A
secondary goal WiUi to provide substantial amounts
of redundant information in the filesystem so that
information could be easily - even automatically
- recovered from damal1:ed disks.

The design of the CnFS file header clearly
illustrates how our concerns translated themselves
into the file system structures. CDFS file headers
average over 240 bytes in length - substantially
larger than the equivalent structures in other
operation systems (for example, UNIX inodes), but
still very small when compared to the average size
of files on an average computer or when compared
to the amount of space available on optical media.
CDFS uses the space to store on a per file basis
information which traditional operating systems
store once per magnetic disk. (The specification for
the CnFS file header is given in appendix A.6).

For example, the CDFS file header includes
the full user name of the person who created the
file (rather than merely storing the user's
"number," as the UNIX file system does, or storing
nothing at all, as the MSDOS and Macintosh file
systems do, assuming that all files on the same
computer are owned by the same user), the site
name of the computer which created t lw file, and

WOFS

backwards pointers to the previous version of the
file and the last EOT on the disk when the file had
been written. By storing the site name on a
file-by-file basis, CDFS allows the possibility that
fil". from multiple sites may be .tored during the
course of a single transaction (as would be the Case
for a networked CDFS file server or archiving
service). By .toring the full uoer name, rather than
just a number, the standard allow a disk to be
moved to a site where the user name to user
number mapping is not known without sacrificing
legibility of the file list command.

By explicitly aoaigning 0. version number And ~
known length to each file system structure, the
CDFS specification allows the possibility for
extension to be made within the context of the
existing standard. For example, files which are
actually links to other files are implemented as
different version of the file_into 8tru«,;tun! in Lhe
file header.

While data transfer rates to and from optical
disks are very high, head repositioning time is very
slow. CDFS is designed to minimize the number of
head rcpooitioning event. necessary to read
information from a disk.

2.4 Advantages of CDFS Over
Traditional File Systems

The principle advantage of using write-once optical
media over magnetic media (besides the increased
storage space), is the ability to recover any file or
document that was ever stored. Even if a file is
updated by a later version or if it is "deleted" from
its containing directory, it is in principle always
possible to find the original document. CDFS
realizes this possibility by providing specific
interfaces for locating previous versions of files or
for "undeleting" files after they have been deleted.

Since blocks, once written, are never changed,
the process of performing an incremental backup of
a CDFS disk is simplified considerably over
magnetic file systems: the disk's newly written
blocks are merely copied, block-for-block, to the

Simson L. Garfinkel page 7

backup disk, which after the backup becomes an
identical CUllY uf th" "wurking" disk.

Use of CDFS allows the same media standard
to be u6ed for a.rchive:;, backup., working file. and
transportation of data. A single, unified set of
utilities can then be employed for all file operations.

3 CDFS CDROMs and the
CDFS /NFS Server

Early in the CDFS development effort, we
recognized clear advantages to using the same file
system standard for read-only and write-once
optical storage devices. Beyond the ability to use
the write-once system as a mastering platform for
the read-only disks, using the same file system
standard allows same software which was used to
create the read-only disk to retrieve the
information. Another exciting possibility allowed
by using the same file system for read-only media
as for write-once is that of using write-once media
as a publication format, to which a user can add
new information (such as personal comments or
updates) in a similar manner to the way a user can
write in the margins of a book with a felt tip pen.
Possibilities such as these led the Electronic
Publishing Group to adopt CDFS as our standard
for CDR.OMs in Fall HlRFi_

After the Electronic Publishing Group made
its first CDROM, the author was contacted by Paul
D. Kahn at Brown University's ffiIS group,
requesting help in making the TLG CDROM
mentioned above. The disk was pressed in spring
1986 and a variety of application programs were
written to use it. The progra.ms accessed the
information on the CDROM via. the CDFS
subroutine library. During the summer of 1987, the
author moved to the ffiIS project as a temporary
systems programmer to write a program to allow
the TLG CDROM to be read via the Sun
Microsystems Network File System (NFS) protocol.

The program, the Compact Disk File System
Daemon (CDFSD), allows a CDFS mastered disk

WOFS

to be read (from any computer which uses the Sun
NFS protocol) as if it was a standard unix file
system. Logically, CDFSD incorporates the CDFS
subroutine library into the operating system's
h.et'nd, ollQwing the 3ubu:.u.t.ille'.l'lo 1,(., h~ cli'moved

from user level programs.

3.1 NFS

NFS is a layered system which allows one computer
to access files on a remote computer M if they were
mounted loc...:uy. NFS i. b""oo UpUll Sun
Microsystem's Remote Procedure Call (RPC)
library, a system which allows one computer to
execute fun~tion. UlI <I.1Iuther. RPC Is, In turn,
based upon Sun's External Data Representation
standard (XDR), which allows computers offrom
different ili .. llufactures using different byte ordering
systems to exchange all types of data in a
byte-order, word-size independent fashion.s

In the working NFS system computers are
classified as servers and clients. A server is a
comput",. which mainta.lns a file system loca.lly and
makes the files in it available to other
computers-the clients-via the network. Although
the operating system (the kernel) of the client must
be modified to recognize which file operations
should be performed locally and which translated
iutu RPC calls, the server can be implemented as a
uSer level program with no modifications to the
server's operating system.?

was required to writ. xoa since the computer which
their early product. were ba.eed upon, the Motorola 68010,

Simson L. Garfinkel page 8

The NFS system actually consists of two
protocol.: MOUNT ami RFS (Rewute File
System). The MOUNT protocol provides a means
for servers to identify to clients what filesystems
are candidates tor file sha.ring. MU U NT also a.lIow6

servers to monitor clients which are using which
shared file systems, principally to allow
notification. to be sent to ~li"llt. when servers are
about to be withdrawn from service. The MOUNT
protocol's only interface with the actual file system
i. tu return upon request to the client a thandle to
the root directory of any given file system.

RFS i. the protocol In which performs the
actual mapping from operating system service calls
on the client to RPC calls which are executed on
the server. The basis of the RFS protocol IS the
!handle concept. A fhandle is a 32 byte opaque
data «cookie" which is plUlSed between a server and
a client to identify files and directories used in RPe
operations.

When an NFS file system is mounted, the
MOUNT program returns to the client a thandle
for the server's root directory (or the root directory
of a particular file system.) This thandle is then
returned to the server, by the client, when other
operations, such lUI read directory, or lookup file in
directory, are requested. RfS is stateless, in that a
fhandl .. uniquely identifies a file or directory even
if the NFS server is restarted (for exam pie, after a
system crash). If the client waits for the server to
restart, it can continue operations lUI if nothing had
ever happened.

was • low-byte first byte ord.red machin ... wbili. nth .. m._ ::1.2 Compact Disk File System Daemon
chines owned by Sun'. targeted customers were high-byte first
ordered machines.

CDFS (alld WOFS) Implements Its own byte-order indepen­
dent external data repres.ntation standard which, while not
as comprehensive as Sun MiclOSystems, is marginally faster
in execution. COFS adopted VAX byte-oMerin.. WOFS
changed the byte-ordering to 68000 byte-ordering. When
CDFS mounts a disk, il examines Ihe byte-ordering used on
the disk and can reverse its byte-ordering on the fly.

11n pra.ctice, the NFS server is written into the "erver'& op­
erating system to provide direct access to file system structures
(in particular, unix inodes) a.nd to improve performance.

The Compact Disk File System Daemon (CDFSD)
is a user level program which implements the server
side of both the MOUNT and RFS protocols.
CDFSD accepts and responds to RPe requests
using Sun Microsystem's svc.registerO,
a VC.rull ° , and BVcsendreplyO+ RPC library
functions. Since no provisions are made in their the
RPC or the NFS protocols for multiple server
processes on a single host (for example, by

WOFS

assigning multiple program numbers to NFS servers
or allowing NFS to uoe arbitrary UDP port
numbers), CDFSD cannot coexist on a machine
which is also a unix-filesystem NFS server.

Unlike a unix fhandle, which consists of a file
system number and an inode number, the CDFSD
fh .. ndl. comi.t. of the following information:

• "h~ iiI" number.

• The containing directory number.

• The drive number.

• The file header location.

Although the CDFSD file number and
containing directory number can be derived from
the file header location, incorporating this
information into the fhandla eliminates the
necessity of having to read the referenced file's file
header before the RPC call can be serviced. The
overhead of including this information is negligible
to the server and zero to the cli~nt.

CDFSD implements the following RFS
procedure calls:

RFS.NULL This procedure does nothing and is
used for timing.

RFS_GETATTR This procedure returns
attributes for a file or directory. It is the RPC
implementation of the unix statO and fstatO
calls. The CDFSD implementation necessarily
performs translation between CDFS file
headers and unix stat buffers (which are used
by NFS).

RFS..LOOKUP This procedure performs the
translation between file names and fhandlas.
It j. th~ unly RFS procedure that creates
fhandles.

RFS.READ This procedure reads a requested
number of bytes in a file from a given starting
location. As CDFS files are stored

Simson L. (iarfin k~1 page 9

contiguously, this procedure merely counts
from the start of the file the requested offset
and then copies data directly from the
CDROM to the RPC reply buffer.

RFS..READDIR This procedure is used by NFS
to read the contents of directories in a
operating system independent ma.nner. This

procedure necessarily performs the translation
between the CDFS and unix directory
structure directories, which NFS u~ea.

While UNIX directories contain only file
names and inode numbers, CDFS directories
contain additional information (such as file size
and last modification date). This additional
information was intentionally placed in the
directory structure to speed extended directory
list commands (e.g. the MSDOS "DIR"
command or the UNIX "Is -1" command) by
eliminating the need for the optical disk to
seek to each file header when a directory list
command is executed. Unfortunately, since
NFS is basically a translation of the UNIX file
system to RPC subroutines, this additional
information is not useful to CDFSD.

RFS.,STATFS This procedure returns
information about the CDFS file system.

3.3 Caching and Performance

CDROM performance (and performance of optical
.toragp .ystl'm. in gl'nA.al) d"p"nds on two fa~tors:
how long it takes for the drive's read head to
traverse the surface of the media to the correct
blocle on the ,Ii_le (_.,,,k tim,,) and how long it tale""

to transfer data from the disk to the host computer
(transfer time). CDFSD employs two forms of
caching to improve subjective performance: block
caching for blocks containing file system structures
and read-ahead caching for data transfers.

All CDFSD procedures call the function
cd.raad_ to transfer data from the CDROM to the
computer. The third parameter of the cd..r d_

function is an integer flag which is used to
differentiate reads of file system blocks from reads

WOFS

of user data. cd..read_ maintains a 300 block
associative cache for all read op"ratiuu. of file
system structures. This cache dramatically
improves performance of file system operations
such"" "open file," ami "read directory," by
changing them from disk· to-memory transactions
to memory-to-memory transactions. This cache is
invi.ible to the procedure calling cd..r8ad_ .

When cd..read_ is forced to read a block of
datil from the disk, It reads several blocks at a time
into a read ahead cache. If successive read requests
are for a block in this read ahead cache, ed..read_
0.1"". not have to perform another physical read.
This cache dramatically improves performance of
reading user data from files, since the time required
to read two blocks from the COROM is negligibly
more than the time required to read one block.
This cache is also invisible to the procedure calling
cd..read_ .

In comparison between the CDFSD and the
• tandard NFS daemon operating from a magnetic
file system, we find that many operations involving
small files are marginally faster with the CDROM
(definitely a result of the block caching) and
sustained read operations involving large files are
marginally slower with the CDROM (owing to the
slower transfer rate from CDROM to computer,
when compared with magnetic.)

4 The Write Once File System

When MIT received its first shipment of optical
drives and media in Fall 1986, the author
discovered a serious flaw in the design of the CDFS
implementation: no provision was made for failed
writos on the optical mediA. Althuugh the CDFS
standard was insensitive to this oversight, the MIT
Media Laboratory's implementation depended on
disk write operatioJUl being perfectly reliable.

During the summer of 1987 the CDFS
implementation was completely redesigned to allow
for failed media writes. At the same time, the
CDFS standard was substantially revised based on

.'lim .• on L. Garfinkel page 10

the accumulated knowledge over the previous two
years. These changes substantially reduced the
complexity of the file system implementation. In
recognition of the substantial changes, the file
system was renamed the Write Once File System.

4.1 WOFS changes to the CDFS
standard

The principle difference between the WOFS and
the CD FS is the adoption ofa new kind of file
system structure called a "file system block,"
(fsblock for short). An fsblock is a 16-byte header,
containing a flag, a self-referential pointer, a type
identifier and a chain count (8ee a.ppendix B.2)
which identifies a block on the optical media. as a
block in which file system structures a.re stored. By
moving all COFS self-referential pointers to a new
layer procedure layer between the hardware device
driver and the CDFS subroutine library, CDFS was
greatly simplified. Other changes made to the
standard include:

• Giving explicit lengths to all variable length
file system structures.

• Inclusion of the directory name into each
directory list element of the directory list to
allow resoltltion of path names without
requiring each directory's file header and
directory contents to be loaded.

• Lengthening of the maximum file name size
from 48 bytes to 80.

• The adoption of a new file type-Log
files-which allows low-overhead a.ppend-only
logs to be maintained.

• The implementation of fragmented files.

5 Related Work

Other proposal for the use of write-once media (e.g.
Easton 1985) assumed that write-once hardware

WOFS

would have the ability to invalidate information
previously recorded on the surface or to fill in fields
previously left empty. Time has shown these
assumptions to be largely incorrect, due to the
nature of the error correction codes employed in
the low level driver hard ware.

Nearly all other proposals for the use of
write-once media involve storing directory
information on some form of rewritable magnetic
storage system. The Amoeba file server [Mullender
and Tanenbaum, 1985] is an example systems of
this type.

A significant excpetion is the recent work on
log files at Stanford University [Cheriton and
Finlayson, 1986]. Like the write once file system,
the Cheriton and Finlayson's log files exploit the
characteristics of write once devices rather than
attempting to hid them from the user. The service
they describes "provides efficient storage and
retrieval of data that is written sequentially
(append-only) and not subsequently modified."
This paper was the inspiration behind the WOFS
log file facility.

6 References

"Working Paper for Information Processing:
Volume and File Structure of CD-ROM for
Information Interchange," prepared as a working
paper of the CD"ROM Ad Hoe Advisory
Committee, popularly known as the High Sierra
Group, Optical Information Systems,
January-February 1987.

Log Files: An Eztended File Service Exploiting
Write-Once Optical Vi.", D .. vid R. Rherltoll MId
Ross S. Finlayson, Stanford University, 1986.

"Thermo-Magneto-Optical Disk P ramise.
High-Capacity, Low-Cost Removable Storage,"
Digital Design, August 1985.

key-Sequence Data Sets on Indelible Storage,
M. C. Easton, Technical Report RJ 4776 (50637),

Simson L. Garfinkel page 11

IBM Research Laboratory, San Jose, California,
July 1985.

Dynamic Linking in a Small Address Space,
M. L. Kazar, S. B. TheSis, Uepartment of Electrical
Engineering and Computer Science, MIT, May
1978.

"A distributed file service based on optimistic
concurrency control," S. Mullender and
A. Tanenbaum, Proceedings 0/ the A eM
Symposium on Operating System Principles, 15-62,
December 1985. The paper that describes the
Amoeba file server.

"A Fast File System for Unix,"
M. K. McKusick, W. N. Joy,S. J. Lerner and
R. S. Fabry, Berkeley Unix documentation, version
4.2, 1983.

The Multics System; An Ezamination of its
Structure, Elliott I. Organick, MIT Press, 1972,
pag.,. 217-234.

"Compact Disc Digital Audio Systems," David
Ranada, Compute" and Electronic., Augu.t 1983.

"Networking on the Sun Workstation," Sun
Microsystems, Mountain View, CA 94043. 1985

WOFS Simson 1. Carfink,,] page 12

A CDFS Specification A.2 Directory List structures

A.3 Directory List Header format

.define DL_ID_STRI'G_LEI 8
A.1 End Of Transaction (EOT) format #define DL_ID_STRIIG "\237\OOlCDFS\250\OOO"

#dotin. DIR_LIST_VERSIOI 1

typedet atruct {
int32
in"t16

intlS
} pointerdet;

modulo_of_value;
bi'te_in ... vo.lloWi

pad;

ed.tine EOT_ID_STRIIG_LE' e
#dotine EOT_ID_STRIIG "\237\002\CDFS\25S\OOO"
edetine EOT_VERSIO' 1
.define CDFS_IMPLEMEITATIO._ID 1

typedef struct {
cher id_atringC EOT.ID.STRIIG.LEI 1;

intlS eot_version;
intlS eot_lonsth;

cdblock eot_location;

int1S
int1S

eQt_checkswa;
COFS_implementation-id;

cdblQck current_41r_lilt;
cdblock previous.eot.location;
cdblock next_eot_location;

int64
int32
int64
int64
int32
int32
lnt32

tilesyste •• creation_time;
trana_number;
trana_"tart_tim.;
trana_end_Ume;
fil.a_writton_on-tran.;
dirl_writt.n-on_tran.;
next_fr ••• fl1e.number;

pointndet pointerdeaC1S1;

intiS number.of.used.pointerdeta;
char encryption.standard[32];
char ovners_name[variable 1;

} eoLfomat;

typede! atruct {
char id_.tring[DL_ID_STRIIG LE. 1 :

int1S dir_list_veraion;
int16 dir_liat_header_lengthj
cdblock d1r_llst_lOc;

intiS dir_list_checkaum;
i:nt11 pAdJ

cdblock prev_dir.list;

int32 dir_list_entry.count;
} dir_lilt;

A.4 Directory List Entry format

typedef .truet {
int32 dir.number;
cdblock header_location;
int32 containing.dir;
int64 modify. time;
int64 contained.bytes;
intiS header_size;
int1S pad;

} lilt.element;

A.1i Directory Format

_define OIRECTORY.lIFO.vtRSrOI. 1
typedet atruct {

int32 directory.info.version;
int32 directory_info.length;

int32 directory.entri •• ;
int32 d1rectory.entry_size;

} directory_into;

#define MAX.COMP.LEI 48
typodef atruct {

char tile.name[MAX_COMP_LEI];

WOFS

cdblock h.ader_location;
int64

int32

int~'2

int16
int16
intiS
int1S

DlQ4ify_t.J. .. ,,;

file_number;

""1e_vil!!ll"sion;
file_type;
header_size;
ac1dname_ count;
pad;

} dir_contenta;

A.6 File Header Format

adefine FILE_TYPE 1
#define DIRECTORY_TYPE 2
adefine SOFT_LIIK_TYPE 3
#detine FRAGMElTED_TYPE 4
#define ADOIAME_TYPE 6

#detlne PH_ID_STRIIG_LEI 8
#detine PH_ID_STatlG "\237\001\CDFS\255\OOO"

.d.~in. HEADER_VERSIOI 1

typed.f struet {
char id_string(FH_ID_STltIIG_LEI];
int.1A h •• d.r_v.r.ioft;
int16 header_length;
int16 header_checksum;
int1S til.header_length;

cdblock tileheader_location;

int32
intiS

int16

int1S
int1t1
int1S
inti6

} tileheader;

tile_number;
file_type;

A~e ••• _info_ot1 •• tj
backup_info_offset;
file_into_offset;
site_into_offset;
property_list_offset;

#define ACCESS_IlFO_VERSIOr 1
adetine GltOUPLEI 32
adefine OWrERLEr 32

typedef struct {
int16
inti6

char

access_info_version;
access_info_length;

file_owner(OWlERLEI);

char
1nne

} access_info;

Sjmson L. Ga.rfinkel

tila_group(altOUPLEI];
%11e_access;

.define DOW'_DIR_CHAR 0376
'define UP_DIR_CHAR 0375

'detine BACKUP_llFO_VERSIOI 1
typedef struet {

intiS
int1S

backup_into_version;
backup_info_length;

pa.ge 13

int32 containins-directory_number;
cdblock previous_version_location;
cdblock preYioua_eot_1Qcatlun;

int16 filename_off.et;
intiS previouI_verlioD_header_Biz.;
char backup_pathname r variable J;

} backup_info:

_define FILE_IlFO_VERSIOr 1

typedef struct {
int16
int16

edblock
int32
int64
int64
int32

} file_info;

file_info_version;
tile_info_lengt.lLj

tile_location;
file letlj!;th;

write_tille;
ereatioll.. till.;
tile_veroion_number;

/* If block is a soft link, ule lott_link_into
• to decode file_info */

'define SOFT_LIIK_VERSIOI 1
typed.f atruct {

int16
int16

ooft_link_into_veraion;
aott_link_info_length;

int64 creation_time;
int32 target_dir;
int32 tarset_ver.iQn;
char target_namer variable J:

} 8ott_link_info;

#define SITE_IlrO_VERSIOI 1
typedet struct {

intI8 site_into_version;
int16 aite_info_length;

char opsys [16];

WOFS

char
(;har

} site_intoi

opsys_version[16] ;
site_nameC variable J;

#d.fin. PROPERTY_LIST_VERSIO. 1

typ.def struct {
int32 property_list_version;
intiS property_list_length;

typede! struct {
int18 prop.rty_na •• _l.n;
int18 property_value_len;
char property_nam.[variable];
char property_valuer variable];

} property_list_record;

A.7 Fragmented files file map

#d.tine STRIP_I8FO_VERSI08 1

typedef 8truCt {
int32
int32

strip_in1o_verlion;
Btrip_info_l.ngth:

int32 strip_count;
} strip_info;

typed.t struct {
cdblock loco
int32 valid_(;hara;

int32 ordinal;
} fragmented_des;

A.S Directory Format

#define DIRECTORY_lIFO_VERSIOI_ 1
typedof Itruct {

int32 directory_into_version;
int32 directory_info_length;

int32 directory_entries;
int32 directory_ontry_size;

} direetory_in~o:

#define MAX_COMP_LEI 48
typed,: struct {

Simson L. Garfinkel page 14

char file_namer MAX_CaMP_LEI];
cdblock header_location;
intS4 modify_tim.;
int32 file_number;
int32

int32
int16
int.tA
intiS
int1S

} dir_contonts;

tile_Bize;
file_verlion;
file_type;
h4!la.d.r_lIi~.;

addname_count;
pad;

B WOFS Specification

R.1 Time and wblock structures

typedef struct {
u_long high;
u_long low;

} int64;

typedef int64 wtime;

typedef struct {
u_long block:
u_short offset;
u_short pad;

} wblock;

B.2 File System Block

'define FS_BLOCK_FLAG "\237\200\005\000"

.define FS_EOT_TYPE 1
'define FS_DL_TYPE 2
'define FS_FH_TYPE 3
'define FS_DIR_TYPE 4

'define FS_HEADER_SIZE (4 + sizeof(wblock)
+ 2 • sizeof(u_short»

'define FS_DATA_SIZE \
BLOCK_SIZE - FS_HEADER_SIZE

typedef struct {

WOFS

char
wblock
u.short

flag[4];
loc;
type;

u_short chain.count:

1* self *1

char data[FS.OATA.SIZE];
} tS.block;

B.3 Flags and other definitions

#define EDT.FLAG
#define DL.FLAG
#ddine OI.FLAG
#define FH.FLAG

1
2
3
4

B.4 End of Transaction

#define EDT. VERSION 2
typedef struct {

u.long flag;

u.short eot.version;
u.short eot.length;

wblock current.dir.list;
u.long prev.eot.loc;
u.long next.eot.loc;

wtime filesyste~creation.time;

u.long trans.number;
wtime trans_start. time;
wtime t~ana.end.time;

u.long files.written.on.trans;
u.long dlrs.WTltten.on.trans;
u.long next.tree.file.number:

cnar volume.name[32];
char encryption.standard[32];
char owners.name

[FS.DATA.SIZE·128]:

Si"J>uu L. Garfillkel

B.5 Directory List

'define DIR.LIST.VERSION 3
'dttl!m. MAX.COMP .SIZE 80

typedef struct {
u.Iong nag;

page 15

u.short dir.Iist.version:
u.short dir.list.header.length;

u.long d1r.list.entry.count;
} dir.list.info; /* array follows *1

typedef struct {
u.long dir.number;
wblock header.loc;
u.long containing.dir;
wtime modify. time;
int64 contained.bytes;
u.short header.size;
u.short pad;

char name[MAX.COMP.SIZE]:
} dir.list.element;

B.6 Directory format

/*
• A dir is a normal file in which
* the contents consist of a
* dir.info header followed by a an
* array of dir.contents. The
* length stored in the file. info
* structure of the file.header is
* equal to sizeof(dir.info) +

* dir.entries * dir.entry.size;
*,

'define DIR_INFO.VERSION 2
typedef struct {

u.long flag;
u_long dir.info.version:

WOFS

u.long dir.entrie.;
u.long dir.entry.size;

} dir.info;

typedef struct {
Ch4X"

llblock
lltime
u.long
u.long
u.short
u."hort
u.short

file.name[KAX.COHP.SIZE]:
header.loc:
modify. time:
fUe.nUJllb"r;
file.length;
file. type;
header.size;
addname.count:

u.short pad;
} dir_contenta;

B.7 File Headers

/* Define tile types */

Idefine NOTHING. TYPE
.define FILE. TYPE
.define DIR.TYPE
#define LINK. TYPE

'define HEADER. VERSION 2
typedef struct {

u.long flag;

o
1
2
3

u.short header. version;
u.short header.length:

u.long file.nuaber;
u.short file.type:

u.short access.info.offset;
u.short access.info.length:
u.short backup.info.offset;
u.short backup.info.length;
u.short file.info.offset;
u.short file.info.length;

Simson L. Garfinkp.l p.g.. 16

u.short site.info.offset;
u.short Slte.lnto.length;
u.short property.info.offset;
u.short property.info.length;

} fileheader;

'detine UNIX.ACCESS.INFO.VERSION 1
'define NAME. LEN 32
typedef struct {

u.10ng access.info.version:

char file.ovner[NAME. LEN]:
char tile.group[NAME. LEN J;
u.short unix.access;

} access. info ;

/* backup info defines *1
'define BACKUP. INFO. VERSION 2
typedef struct {

u.long backup. info. version;
u.long containing.dir.number;
wblock prev.version.loc;
u.10ng prav.eot.loc;
u.short prev~version.header.size;
char filaname[MAX.COMP.SIZE];

} backup.info;

'defina CONTIG.FILE.INFO.VERSION 1
'define FRAG.FILE.INFO.VERSION 2

t·ypedaf struct {
u.10ng fila.info.varsion;

wblock
u.10ng
wtime

contents;
byte.count;
write. time;

wtima creation. time;
u.long file.version.number;

} file. info ;
typdef file.info frag.file.into;

1* In a fragmanted fila:
* contants . 1oc of frag.des array.
* byte.count • size of the array.
*1

WOFS

typedef struct {
wblock loc;
u.long valid.chars;
u.long ordinal;

} frag.des;

#define LOG.FILE.INFO.VERSION 3
typedef struct {
u.long file.info.version;

"block entry;
u.long entry.bytes;
"time entry.time;

"block prev.header;
u.long total.bytes;
wtime creation. time;
} log.file.info;

1* If file.header is a soft link,
* use sOft.link.info.
* to decode the file. info *1

1* As denoted in symbolic links *1
.define DOWN. OrR. CHAR 037~
'define IlP.DIR.CHAR 0375

'define SOFT.LINK.VERSION 3
typAdof stru~t {

u.long soft.l1nk.info.version;

int64 creation. time;
u.long target.dir;
u.long target. version;
char tarset.nameC 256]:

} soft.link.info ;

'define FIRM.LINK.VERSION 4
typedef struct {

u.long firm.link.info.varsion;

int64 creation.time;
u.long target.dir;
u.long target.version;
u.long target.filenumber;

} firrn.link.info ;

Simson L. Garfinkel

'define SITE.INFO.VERSION 1
typedef struct {

u.long site.info.version;

char
char
char

} site.info :

opsys[16];
opsys.v[16];
s1 te.name [64];

'define PROPERTY.LIST_VERSION i

typedef struct {

page 11

u_long property_list_version;
u.long property.11st.length;
u.long property.list.entries;

} prnpArty.list.info;

'define variable 1
typodef struct {

u.short property.name.len;
u.short property.value.len;
eh~r property.namo[variable];
char property.value[variable];

} property.list.record;

