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Abstract 

Thi. pap"r. d ... crib ... two file sy.temo which were 
designed for use with write-once media: The 
Compact Disk File System (CDFS) and the Write 
Once File System (WOFS). CDFS was d"siglled at 
the MIT Media Laboratory during the summer of 
1985 and wa.s successfully used to master five 
CDROM disk •. Althuugh CDFS WaS intended for 
use with write-once media, several design flaws 
prevented this possibility. The Write Once File 
System, desiglled during the summer of 1987, 
corrects the flaws of CDFS. 

This paper alBo describes an application 
program written using CDFS which exports CDFS 
file systems to remote computers via a high speed 
network and Sun Microsystem's Network File 
System (NFS) protocol. 

This paper is divided into chapters. Each 
chapter designs a particular project involving one 
of the above file systems. For the purpose of 
reprinting, irrelevant chapters may be omitted. 

The research described in this paper performed 
at the MIT Media Lab was made possible by a 
grant from IBM. 

J. Spencer Love, formally of MIT Information 
Systems, contributed significantly to the design of 
CDFS. 

1 Introduction 

In ~pring HIRI), I was @mployed as an 
undergraduate researcher at the MIT Media 
Laboratory's Electronic Publishing Group.! That 
spring, the laboratory received a Sony CDU·1 

• prototype CDROM reader. Walter Bender, my 
research advisor, asked me if I would like to 
experiment with the unit. 

1 

For many years, the Electronic Publishing 
Group (forma.lly called the Architecture M .. chine 
Group) hrul. been interested in optical storage 
devices, in particular optical video disks, both 
because of the l .. rge amount of available storage 
and the relatively low access times when compared 
with other media, such as videotape.2 

The CDU-l's minimal documentation 
indicated that the drive could read 2K blocks from 
a "CDROM" disk, each which was identified hy a 
minute, second and block number. We tried an 
audio disk in the player and discovered that audio 

1 An innovative program at MIT, "UROP' (undergradu­
a.te research opportunities program), alJows undergraduates to 
participate in research projects in the Institute'. departments 
a.nd 16boro.toneo. 

:JOne of the Group's ea.rlier projects, "Aspen," allowed a. 
person sitting in front of a touch sensitive monitor to "drive" 
a simulated car around the .treet. of Aspen, Colorado. To 
perform the demo. over 20,000 different views of the city had 
to be stored on a video disk. This was one of the first uses of 
interactive video di.ks. Other project. by the group included 
the use of write-once video disks in anima.tion. 
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disks were not in the CDROM format. The test 
disk which Sony had been provided contained 
approximately 10MB of test patterns on it; the rest 
of the disk was blank. "I wish they had asked me 
what to put on the rest of the disk," a graduate 
student said to me. "I would have given them 
pictures." 

We soon realized that in order to use our new 
CDROM player, we were going to have to make our 
own disk. The next question was how to arrange 
the information on the disk. In Spring 1985, 
neither Digital's UNIFILE CDROM format nor the 
High Sierra standard existed. Such standards were 
under development at the time, but we were largely 
ignorant of such efforts. Without pre-defined 
standards, the author decided to develop his own. 

A simple way for us to have used our CDROM 
player would have been to master a CDROM that 
contained an exact, block-for-block disk image of 
an existing file system. With such a di.lc .url a 
block level device driver, we could read the disk as 
a read-only file system on the same computer from 
which the data was originally "TP.at"rI. Other 
computers could read the disk by using a suitable 
conversion library or through some sort of 
operating system inrlependent network file system 
such as Sun Microsystem's NFS. 

The problem with the disk block image 
approach was that it would not be extensible to 
write-once optical devices as they became available, 
and the group'. experience with video disk. led us 
to believe that write-once devices would soon be 
available. Although applications such as 
encyclopedias and maps would work fine with large 
read-only databases, other projects which we were 
interested in, such as personalized newspapers, 
would not. "It'. much mure interesting to think 
about what you can do with a. 300MB database 
that is constantly growing," I told Dr. Bender, 
"than to think about all the ways to access 3UUMB 
of static data.. Another application I was interested 
by Was the possibility of using .. write-once optical 
disk system as a personal, portable mass storage 
system for coherent use with the wide variety of 
computers available at MIT. 

-
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Over the next six months, under the 
supervision of Dr. Bender, I developed a file system 
for use with Write Once Media. At first, the effort 
consisted largely of late-night design meetings with 
J. Spencer Love, then a system programmer at 
MIT Information Systems, trying to devise a way 
to efficiently store and retrieve information from a 
write-once media. By the middle of the summer I 
had started on the file system's first 
implementation, which first became operational on 
August 15, 1985. 

Since write-once drives and media were not 
available to use at the time, I developed the file 
system using a write-once simulator. The simulator 
presented the file system implementation with th" 
appearance of a write-once device using a file 
resident on a magnetic disk. When we started 
mastering CDROMs later th~.t year, we discovered 
that the simulator system doubled as an excellent 
mastering system: the simulator file, copied to a 
nine-track magnMic tap .. in ANSI format, was all 
that was required by 3M corporation to master our 
CDROMs. 

1.1 Design goals 

Our two primary goals in designing the file system 
were: 

1. That the file system operate with the same 
level of performance with any size of 
write-once media, whether it be a 50MB 
optical card, a 650MB write-once COROM, or 
a. 10GB jukebox or optkal plAtters, IJ.ml !ll .. ! 
this performance be comparable to 
performance obtained with magnetic media. 

-and-

2. That performance of the file system would not 
degrade as a disk became filled with files and 
directories. 

Since we didn't have a write-once device 
during the design process, we decided that we had 
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to make as few assumptions about the physical 
llil.ture of write-once media as possible. The only 
assumptions that we made were that sequential 
blocks of data could be written to the write-once 
device, that the block size used by the device would 
be a constant from the first block to the last 
(although no specific block size was assumed), that 
blocks once written could be rt'.ad in any order, and 
that the write-once hardware could determine 
whether a block had been written or was virginal. 

We did not assume that blocks could be 
invalidated or destructively written after the initial 
write operation. We further did not assume that a 
media would be consistently mounted on the same 
operating system or computer: that is, we wanted a 
p.ll_on using our file system to be able to freely 
move an optical platter from one computer to 
another, even if the two computers used different 
operating systems. 

This first version of the write-once file system 
was finished ill September 1985 and was called the 
Compact Disk File System (CDFS), it's name 
indicating that it was designed primarily for use 
with comp ... cL di.ks (In 1911.:l, the author had 
foolishly hoped that hardware vendors would be 
supplying consumers with devices which would be 
... hle to record in the audio CD and CDROM 
format.) The implementation was written in 
porta.ble C code and operated without modification 
on Digital Equipment Corporation's VAX series of 
computers under UNIX, Sun Microsystem's 
workstations, and on IDM Personal Computers. 

During the following year and a half, CDFS 
was used to master four CDROMs at the MIT 
Media Laboratory and one CDROM at Brown 
University's IRIS project.3 

In December 1986 and January 1987, I 
developed a read-only CDFS implementation, the 

3The four MIT CDROMe consisted. of an initial test disk, 
• disk containing a copy of the CIA'. World Databank II and 
associated information, and two disks of encoded motion se.­
quences for the group'. "Movie'. of the Future" project. The 
IRIS disk consisted of the Thesaurus Linguae Graecae Da.ta 
Bank (aU remaining greek document. from the ancient world) 
and a.sociated index files. 
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Micro-CDFS, to prove to Dr. Bender that it could 
be written in less than 10K of object code, hence 
the name. (The actual MCDFS implementa.tion 
was less than 5K of object code and provided 
complete emulation for all of the UNIX system 
calls to access files in a read-only fashion.) 

In the Spring of 1987, several research groups 
at MIT acquired write once devices and an initial 
attempt was made to use the CDFS. At this time, 
the author discovered that a basic assumption 
made by the CDFS implementation-that write 
opera.tions to the optical media were completely 
reliable-was invalid. Design of a new version of 
CDFS (later named WOFS (Write Once File 
System)) with the assistance of James Anderson of 
MIT's Project Athena was commenced at that 
time, but final implementation was delayed until 
the author finished his undergraduate thesis' and 
graduated from MIT. 

In June 1987, I was employed by the IRIS 
project at Brown University to write a program to 
allow the CDllOM mastered in the CDt·S format 
to be accessed via. Sun Microsystem's Network File 
System. Bec,,:use the project was designed to access 
CUKOMs, the ptogram \CDFSD - Compact Disk 
File System Daemon) only implemented the NFS 
procedures necessary for read operations. The 
read-only NFS server can be operated on any BSD 
4:2 (or later) UNIX computer which supports sun's 
portmapper RPC protocol and has a device driver 
capable of reading blocks from a CDROM player. 
It is currently in use with an IBM RT fPC 
workstation. 

In July and August 1987. the author 
completed the development of WOFS. 

• Radio Reswrch, McCartJiVi,m, and Paul F. Lazors/eld, 
Simson 1. Garfinkel, undergraduate thesis, M ...... chusett. In­
stitute of Technology, June 1987. 
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2 The Compact Disk File 
System 

2.1 How CDFS works 

cnFS organizes write operations to the media. as " 
stream of sequential block writes. No blank blocks 
are left in the anticipation of future block writes. 
CDFS' approach divides a disk into two discrete 
regions: one in which blocks have been recorded 
and one in which they have not. The file system 
implemE!'ntation kQ9ps record of where the dividing 

point between these two regions is by locating the 
last written block and maintaining that location 
during th .. cour." of all op"rations. 

When the implementation mounts an optical 
disk it first r~"n. t.he first block on the disk which 
cont;Uns a special block called an End Of 
Transaction (EOT) block. The EOT contains, in a 
fixed byte,oM"r rApr ... "ntation, an 8 byte flag 
which identifies the disk as a CDFS·format disk 
l:lnd. CQutn.ino other irnportAont in£v'[llla.tlvu. (Th'tl 

full CDFS EOT specification i. pr ... .,nted in 
Appendix A.1) 

The End Of 'Transaction block i. so call<!d 
because it is the last block written to the disk when 
the disk is dismounted. The disk blocks between 
snrN",.i"" EOTs record all changes made to the file 
system resident on the disk for a particular use 
session (called transactions). 

After locating the first EOT on the disk, the 
implementation next locates the last written block 
on the diskS which should be another EOT, the I""t 
EDT written to the disk. 

The EOT belongs to .. claso of objects called 
file system structures. File system structures are 
blocks of data, recorded by the :file system 
implementation on the disk, which are decoded by 
the file system implementation and used by the 
implementation to locate and retrieve data which 

'Locating the last written block on the disk is accomplishetl 
by a binary search across the media. 
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had been previously stored. Other file system 
structures include Directories, File Headers and 
Directory Lists. 

File system structures contain pointers to 
other :file systems structures on the same media. 
These pointers are called c:dbloc:k pointers, and 
reference a particular block number and offset 
within that block. By allowing cdblocll: pointers to 
reference exact bytes, the CDFS specification allows 
multiple :file system structures to be packed within 
the same logical block, although this possibility was 
not exploited in our first implementation. 

The most recent EOT on the disk contains a 
pointer to the most recent Directory List on the 
disk. The Directory List contains an array in which 
each element of the array identifies a directory on 
the disk and has a cdblocll: pointer to the most 
recent version of that directory. (The full CDFS 
Directory List specification is presented in 
appendix A.2.) Similarly, each directory on the 
disk contains a cdblocll: pointer to the most recent 
version of every file it contains. 

The Directory List is the key to an efficient 
implementation of a modifiable hierarchical file 
system on a write-once disk. Since CDFS stores 
both :files and directories on the same write-once 
media, it is necessary to rewrite a directory 
whenever a file contained within it is added, 
deleted, or modified. The Directory list eliminates 
the necessity of having to additionally rewrite all of 
the containing directories. Since the Directory List 
contains a cdblocll: pointer to the most recent 
version of each directory on the disk, directories are 
located via the directory list. rather than from 
pointers in their containing directories. When the 
location of a directory on the disk changes (as 
happens when the directory's contents arc 
changed). it is necessary only to rewrite the 
Directory List to still retain a pointer directly to 
the most recent version of the directory. Withont II 
Directory List, a modification to any sub-directory 
within the file hierarchy would require rewriting 
every directory above the modificAt.ion, including 
the root directory, which would greatly increase the 
overhead of the file system. The Directory List is 
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designed to be compact to further decrease storage 
requireruent:s. 

In practice, write operations to the optical disk 
are hatched in group. caJled Tran.actions. During 
a Transaction, new files are written to the disk as 
they are created, but changes to their containing 
directorie. and th" Dir",tory List are buffered In 
memory. At the close of the Transaction, all 
modified directories, the Directory List, and a new 
EOT a.re writ tell and the disk can be removed from 
the drive. In the event of an interrupted 
Transaction (such as a power failure or removal of 
the disk frum the drIve before dismounting), the 
File Header which is written with each file contains 
enough information to reconstruct the directories, 
Directory List, and EOT which had not yet been 
written. 

2.2 Two Example Transactions 

Although the CDFS standard does not specify the 
order in which Transactions should occurs, most 
implp.mAntations will follow a prOCGSS simila.r to 

example outlined bellow. 

Tn this Py;\.mplp/ t.h~ writl:!'~ont:Q m9dia ~tarh 

blank. In the first Transaction, the two files, life.c 
and wheel.c are written and placed in the root 
directory. In the second Transaction, a new version 
of the file life.c is written. This example 
Transaction is intentionally simple. 

As defined in the standard, the first block on. 
the disk must be an EOT. During the course of the 
first transaction, the two files are written to the 
disk. When the transaction is completed, the 
CDFS implementation writes a new copy of the 
root directory to the disk, a. new Directory List, 
and a new EOT. The EOT contains a pointer to 
the Directory List, which contains a pointer to the 
root directory, whkh contains pointen to each of 
the files. The state of the disk at the completion of 
the first transaction is depicted bellow: 

The following blocks were written on the first 
transaction: 

0 

....... 1 

, 
r'" 3 

i"<' , 
::;: , 
~ • 

(bl.Db /ollow) 
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tha' EOT on disk (,uperblof;k) 

"lif«.c" IlI.he.d,n and contenl. 
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""h •• l.e" tileh • .,der and conte.h 

root diree'ory 

directory Ii,. 

i .. i EOT on di.k 

Figure 1: Direct Read After Write disk after a sam­
ple transaction 

o The first block of a CDFS disk contains an 
EOT, which identifieo the di.k as a. CDFS disk. 
This block also contains the name of the disk's 
owner, the time of the disk's creation, the 
name of the .ite which created tll" CD and 
other interesting information. 

1 The file li/e.e is stored contiguously, preceded 
by its File Header. Since the File Header 
contains a cdblock pointer to the contents of 
thP filA, th .. Fi]", H""d". could equally well b" 
written after the file. The file begins in the 
same block as the header and extends for two 
block •. 

3 The file wheel. e is the second file on the CD, 
stored as file header followed by file contents. 
The file and its contents fit within the single 
block. 

4 The root directory follows. The directory 
contains a cdblock pointer to each file within 
it. cdblock pointers are drawn as arrows in 
this example. 

5 The Directory List follows the directories. It 
contains a cdbloc:k pointer to each directory 
on the disk. 

6 An EOT is the last block written to the CD. It 
contains a cdblock pointer to the Directory 
List. 

The section transaction takes place 
independently of the first. At the start of the 
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(bhutk. foUow) 
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J. 
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f--

I--

"HI .. ,." 111 ....... <1 .......... " ..... , ... t. 

Uwheel.c" &lehlilader 6D.d con ten', 

EOT 

roo' directory ( •• eGad vfl,ian) 

dir.etory lilll. (.eeond venion) 

1 ••• EOT on ditk 

Figure 2: Direct Read After Write disk after a second 
sample transaction. Arrows on the left hand side 
trace pointers from the EOT to the most current 
version of each file. Arrows on the right hand side 
trace pointers to previous versions. 

second transaction, the implementation reads the 
first and the l""t block. on the disk. A new vee"ion 
of the file life.c is written to the disk and the 
Transaction is ended, which causes a new root 
directory, Directory Li.t .. ud EOT to be written. 
After the second transaction a schematic view of 
the optical media would looks like figure 2. 

While no blocks on the disk have been 
changed, the last EOT commences a chain of 
pointers which points now to the newest version of 
each file, because the definition of "the last EOT" 
has changed. 

The blocks that were written on the second 
transaction include: 

7 The first file written on the second transaction 
is the updated v"r.ion of life.c. Th" new fil" 
header of li/e.e contains a pointer to the 
previous version (shown on the right). The 
new veT.ion of life.c is thr<lO blocks long. 

10 The new version of the root directory contains 
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cdblock pointers to the most current version 
of each me within it. Note that directories can 
(and often do) reference files which were 
written on previous Transactions. 

11 The Directory List is written after the root 
directory. It contains a pointer to the most 
recont vorsion of that directory. 

12 The EOT block is written last. It contains a 
pointer to the most recent Dir""tory List. It 
also contains a pointer to the previous EOT. 

2.3 Design choices made in CDFS 

The design choices made in developing the CDFS 
were based both upon the desire for the file system 
to efficient and for the file system to be usable in an 
environment of heterogeneous operating systems, 
hardware vendors and administrative policies. A 
secondary goal WiUi to provide substantial amounts 
of redundant information in the filesystem so that 
information could be easily - even automatically 
- recovered from damal1:ed disks. 

The design of the CnFS file header clearly 
illustrates how our concerns translated themselves 
into the file system structures. CDFS file headers 
average over 240 bytes in length - substantially 
larger than the equivalent structures in other 
operation systems (for example, UNIX inodes), but 
still very small when compared to the average size 
of files on an average computer or when compared 
to the amount of space available on optical media. 
CDFS uses the space to store on a per file basis 
information which traditional operating systems 
store once per magnetic disk. (The specification for 
the CnFS file header is given in appendix A.6). 

For example, the CDFS file header includes 
the full user name of the person who created the 
file (rather than merely storing the user's 
"number," as the UNIX file system does, or storing 
nothing at all, as the MSDOS and Macintosh file 
systems do, assuming that all files on the same 
computer are owned by the same user), the site 
name of the computer which created t lw file, and 
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backwards pointers to the previous version of the 
file and the last EOT on the disk when the file had 
been written. By storing the site name on a 
file-by-file basis, CDFS allows the possibility that 
fil". from multiple sites may be .tored during the 
course of a single transaction (as would be the Case 
for a networked CDFS file server or archiving 
service). By .toring the full uoer name, rather than 
just a number, the standard allow a disk to be 
moved to a site where the user name to user 
number mapping is not known without sacrificing 
legibility of the file list command. 

By explicitly aoaigning 0. version number And ~ 
known length to each file system structure, the 
CDFS specification allows the possibility for 
extension to be made within the context of the 
existing standard. For example, files which are 
actually links to other files are implemented as 
different version of the file_into 8tru«,;tun! in Lhe 
file header. 

While data transfer rates to and from optical 
disks are very high, head repositioning time is very 
slow. CDFS is designed to minimize the number of 
head rcpooitioning event. necessary to read 
information from a disk. 

2.4 Advantages of CDFS Over 
Traditional File Systems 

The principle advantage of using write-once optical 
media over magnetic media (besides the increased 
storage space), is the ability to recover any file or 
document that was ever stored. Even if a file is 
updated by a later version or if it is "deleted" from 
its containing directory, it is in principle always 
possible to find the original document. CDFS 
realizes this possibility by providing specific 
interfaces for locating previous versions of files or 
for "undeleting" files after they have been deleted. 

Since blocks, once written, are never changed, 
the process of performing an incremental backup of 
a CDFS disk is simplified considerably over 
magnetic file systems: the disk's newly written 
blocks are merely copied, block-for-block, to the 
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backup disk, which after the backup becomes an 
identical CUllY uf th" "wurking" disk. 

Use of CDFS allows the same media standard 
to be u6ed for a.rchive:;, backup., working file. and 
transportation of data. A single, unified set of 
utilities can then be employed for all file operations. 

3 CDFS CDROMs and the 
CDFS /NFS Server 

Early in the CDFS development effort, we 
recognized clear advantages to using the same file 
system standard for read-only and write-once 
optical storage devices. Beyond the ability to use 
the write-once system as a mastering platform for 
the read-only disks, using the same file system 
standard allows same software which was used to 
create the read-only disk to retrieve the 
information. Another exciting possibility allowed 
by using the same file system for read-only media 
as for write-once is that of using write-once media 
as a publication format, to which a user can add 
new information (such as personal comments or 
updates) in a similar manner to the way a user can 
write in the margins of a book with a felt tip pen. 
Possibilities such as these led the Electronic 
Publishing Group to adopt CDFS as our standard 
for CDR.OMs in Fall HlRFi_ 

After the Electronic Publishing Group made 
its first CDROM, the author was contacted by Paul 
D. Kahn at Brown University's ffiIS group, 
requesting help in making the TLG CDROM 
mentioned above. The disk was pressed in spring 
1986 and a variety of application programs were 
written to use it. The progra.ms accessed the 
information on the CDROM via. the CDFS 
subroutine library. During the summer of 1987, the 
author moved to the ffiIS project as a temporary 
systems programmer to write a program to allow 
the TLG CDROM to be read via the Sun 
Microsystems Network File System (NFS) protocol. 

The program, the Compact Disk File System 
Daemon (CDFSD), allows a CDFS mastered disk 
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to be read (from any computer which uses the Sun 
NFS protocol) as if it was a standard unix file 
system. Logically, CDFSD incorporates the CDFS 
subroutine library into the operating system's 
h.et'nd, ollQwing the 3ubu:.u.t.ille'.l'lo 1,(., h~ cli'moved 

from user level programs. 

3.1 NFS 

NFS is a layered system which allows one computer 
to access files on a remote computer M if they were 
mounted loc...:uy. NFS i. b""oo UpUll Sun 
Microsystem's Remote Procedure Call (RPC) 
library, a system which allows one computer to 
execute fun~tion. UlI <I.1Iuther. RPC Is, In turn, 
based upon Sun's External Data Representation 
standard (XDR), which allows computers offrom 
different ili .. llufactures using different byte ordering 
systems to exchange all types of data in a 
byte-order, word-size independent fashion.s 

In the working NFS system computers are 
classified as servers and clients. A server is a 
comput",. which mainta.lns a file system loca.lly and 
makes the files in it available to other 
computers-the clients-via the network. Although 
the operating system (the kernel) of the client must 
be modified to recognize which file operations 
should be performed locally and which translated 
iutu RPC calls, the server can be implemented as a 
uSer level program with no modifications to the 
server's operating system.? 

was required to writ. xoa since the computer which 
their early product. were ba.eed upon, the Motorola 68010, 
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The NFS system actually consists of two 
protocol.: MOUNT ami RFS (Rewute File 
System). The MOUNT protocol provides a means 
for servers to identify to clients what filesystems 
are candidates tor file sha.ring. MU U NT also a.lIow6 

servers to monitor clients which are using which 
shared file systems, principally to allow 
notification. to be sent to ~li"llt. when servers are 
about to be withdrawn from service. The MOUNT 
protocol's only interface with the actual file system 
i. tu return upon request to the client a thandle to 
the root directory of any given file system. 

RFS i. the protocol In which performs the 
actual mapping from operating system service calls 
on the client to RPC calls which are executed on 
the server. The basis of the RFS protocol IS the 
!handle concept. A fhandle is a 32 byte opaque 
data «cookie" which is plUlSed between a server and 
a client to identify files and directories used in RPe 
operations. 

When an NFS file system is mounted, the 
MOUNT program returns to the client a thandle 
for the server's root directory (or the root directory 
of a particular file system.) This thandle is then 
returned to the server, by the client, when other 
operations, such lUI read directory, or lookup file in 
directory, are requested. RfS is stateless, in that a 
fhandl .. uniquely identifies a file or directory even 
if the NFS server is restarted (for exam pie, after a 
system crash). If the client waits for the server to 
restart, it can continue operations lUI if nothing had 
ever happened. 

was • low-byte first byte ord.red machin ... wbili. nth .. m._ ::1.2 Compact Disk File System Daemon 
chines owned by Sun'. targeted customers were high-byte first 
ordered machines. 

CDFS (alld WOFS) Implements Its own byte-order indepen­
dent external data repres.ntation standard which, while not 
as comprehensive as Sun MiclOSystems, is marginally faster 
in execution. COFS adopted VAX byte-oMerin.. WOFS 
changed the byte-ordering to 68000 byte-ordering. When 
CDFS mounts a disk, il examines Ihe byte-ordering used on 
the disk and can reverse its byte-ordering on the fly. 

11n pra.ctice, the NFS server is written into the "erver'& op­
erating system to provide direct access to file system structures 
(in particular, unix inodes) a.nd to improve performance. 

The Compact Disk File System Daemon (CDFSD) 
is a user level program which implements the server 
side of both the MOUNT and RFS protocols. 
CDFSD accepts and responds to RPe requests 
using Sun Microsystem's svc.registerO, 
a VC.rull ° , and BVcsendreplyO+ RPC library 
functions. Since no provisions are made in their the 
RPC or the NFS protocols for multiple server 
processes on a single host (for example, by 
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assigning multiple program numbers to NFS servers 
or allowing NFS to uoe arbitrary UDP port 
numbers), CDFSD cannot coexist on a machine 
which is also a unix-filesystem NFS server. 

Unlike a unix fhandle, which consists of a file 
system number and an inode number, the CDFSD 
fh .. ndl. comi.t. of the following information: 

• "h~ iiI" number. 

• The containing directory number. 

• The drive number. 

• The file header location. 

Although the CDFSD file number and 
containing directory number can be derived from 
the file header location, incorporating this 
information into the fhandla eliminates the 
necessity of having to read the referenced file's file 
header before the RPC call can be serviced. The 
overhead of including this information is negligible 
to the server and zero to the cli~nt. 

CDFSD implements the following RFS 
procedure calls: 

RFS.NULL This procedure does nothing and is 
used for timing. 

RFS_GETATTR This procedure returns 
attributes for a file or directory. It is the RPC 
implementation of the unix statO and fstatO 
calls. The CDFSD implementation necessarily 
performs translation between CDFS file 
headers and unix stat buffers (which are used 
by NFS). 

RFS..LOOKUP This procedure performs the 
translation between file names and fhandlas. 
It j. th~ unly RFS procedure that creates 
fhandles. 

RFS.READ This procedure reads a requested 
number of bytes in a file from a given starting 
location. As CDFS files are stored 
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contiguously, this procedure merely counts 
from the start of the file the requested offset 
and then copies data directly from the 
CDROM to the RPC reply buffer. 

RFS..READDIR This procedure is used by NFS 
to read the contents of directories in a 
operating system independent ma.nner. This 

procedure necessarily performs the translation 
between the CDFS and unix directory 
structure directories, which NFS u~ea. 

While UNIX directories contain only file 
names and inode numbers, CDFS directories 
contain additional information (such as file size 
and last modification date). This additional 
information was intentionally placed in the 
directory structure to speed extended directory 
list commands (e.g. the MSDOS "DIR" 
command or the UNIX "Is -1" command) by 
eliminating the need for the optical disk to 
seek to each file header when a directory list 
command is executed. Unfortunately, since 
NFS is basically a translation of the UNIX file 
system to RPC subroutines, this additional 
information is not useful to CDFSD. 

RFS.,STATFS This procedure returns 
information about the CDFS file system. 

3.3 Caching and Performance 

CDROM performance (and performance of optical 
.toragp .ystl'm. in gl'nA.al) d"p"nds on two fa~tors: 
how long it takes for the drive's read head to 
traverse the surface of the media to the correct 
blocle on the ,Ii_le (_.,,,k tim,,) and how long it tale"" 

to transfer data from the disk to the host computer 
(transfer time). CDFSD employs two forms of 
caching to improve subjective performance: block 
caching for blocks containing file system structures 
and read-ahead caching for data transfers. 

All CDFSD procedures call the function 
cd.raad_ to transfer data from the CDROM to the 
computer. The third parameter of the cd..r .... d_ 

function is an integer flag which is used to 
differentiate reads of file system blocks from reads 
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of user data. cd..read_ maintains a 300 block 
associative cache for all read op"ratiuu. of file 
system structures. This cache dramatically 
improves performance of file system operations 
such"" "open file," ami "read directory," by 
changing them from disk· to-memory transactions 
to memory-to-memory transactions. This cache is 
invi.ible to the procedure calling cd..r8ad_ . 

When cd..read_ is forced to read a block of 
datil from the disk, It reads several blocks at a time 
into a read ahead cache. If successive read requests 
are for a block in this read ahead cache, ed..read_ 
0.1"". not have to perform another physical read. 
This cache dramatically improves performance of 
reading user data from files, since the time required 
to read two blocks from the COROM is negligibly 
more than the time required to read one block. 
This cache is also invisible to the procedure calling 
cd..read_ . 

In comparison between the CDFSD and the 
• tandard NFS daemon operating from a magnetic 
file system, we find that many operations involving 
small files are marginally faster with the CDROM 
(definitely a result of the block caching) and 
sustained read operations involving large files are 
marginally slower with the CDROM (owing to the 
slower transfer rate from CDROM to computer, 
when compared with magnetic.) 

4 The Write Once File System 

When MIT received its first shipment of optical 
drives and media in Fall 1986, the author 
discovered a serious flaw in the design of the CDFS 
implementation: no provision was made for failed 
writos on the optical mediA. Althuugh the CDFS 
standard was insensitive to this oversight, the MIT 
Media Laboratory's implementation depended on 
disk write operatioJUl being perfectly reliable. 

During the summer of 1987 the CDFS 
implementation was completely redesigned to allow 
for failed media writes. At the same time, the 
CDFS standard was substantially revised based on 
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the accumulated knowledge over the previous two 
years. These changes substantially reduced the 
complexity of the file system implementation. In 
recognition of the substantial changes, the file 
system was renamed the Write Once File System. 

4.1 WOFS changes to the CDFS 
standard 

The principle difference between the WOFS and 
the CD FS is the adoption ofa new kind of file 
system structure called a "file system block," 
(fsblock for short). An fsblock is a 16-byte header, 
containing a flag, a self-referential pointer, a type 
identifier and a chain count (8ee a.ppendix B.2) 
which identifies a block on the optical media. as a 
block in which file system structures a.re stored. By 
moving all COFS self-referential pointers to a new 
layer procedure layer between the hardware device 
driver and the CDFS subroutine library, CDFS was 
greatly simplified. Other changes made to the 
standard include: 

• Giving explicit lengths to all variable length 
file system structures. 

• Inclusion of the directory name into each 
directory list element of the directory list to 
allow resoltltion of path names without 
requiring each directory's file header and 
directory contents to be loaded. 

• Lengthening of the maximum file name size 
from 48 bytes to 80. 

• The adoption of a new file type-Log 
files-which allows low-overhead a.ppend-only 
logs to be maintained. 

• The implementation of fragmented files. 

5 Related Work 

Other proposal for the use of write-once media (e.g. 
Easton 1985) assumed that write-once hardware 
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would have the ability to invalidate information 
previously recorded on the surface or to fill in fields 
previously left empty. Time has shown these 
assumptions to be largely incorrect, due to the 
nature of the error correction codes employed in 
the low level driver hard ware. 

Nearly all other proposals for the use of 
write-once media involve storing directory 
information on some form of rewritable magnetic 
storage system. The Amoeba file server [Mullender 
and Tanenbaum, 1985] is an example systems of 
this type. 

A significant excpetion is the recent work on 
log files at Stanford University [Cheriton and 
Finlayson, 1986]. Like the write once file system, 
the Cheriton and Finlayson's log files exploit the 
characteristics of write once devices rather than 
attempting to hid them from the user. The service 
they describes "provides efficient storage and 
retrieval of data that is written sequentially 
(append-only) and not subsequently modified." 
This paper was the inspiration behind the WOFS 
log file facility. 
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A CDFS Specification A.2 Directory List structures 

A.3 Directory List Header format 

.define DL_ID_STRI'G_LEI 8 
A.1 End Of Transaction (EOT) format #define DL_ID_STRIIG "\237\OOlCDFS\250\OOO" 

#dotin. DIR_LIST_VERSIOI 1 

typedet atruct { 
int32 
in"t16 

intlS 
} pointerdet; 

modulo_of_value; 
bi'te_in ... vo.lloWi 

pad; 

ed.tine EOT_ID_STRIIG_LE' e 
#dotine EOT_ID_STRIIG "\237\002\CDFS\25S\OOO" 
edetine EOT_VERSIO' 1 
.define CDFS_IMPLEMEITATIO._ID 1 

typedef struct { 
cher id_atringC EOT.ID.STRIIG.LEI 1; 

intlS eot_version; 
intlS eot_lonsth; 

cdblock eot_location; 

int1S 
int1S 

eQt_checkswa; 
COFS_implementation-id; 

cdblQck current_41r_lilt; 
cdblock previous.eot.location; 
cdblock next_eot_location; 

int64 
int32 
int64 
int64 
int32 
int32 
lnt32 

tilesyste •• creation_time; 
trana_number; 
trana_"tart_tim.; 
trana_end_Ume; 
fil.a_writton_on-tran.; 
dirl_writt.n-on_tran.; 
next_fr ••• fl1e.number; 

pointndet pointerdeaC1S1; 

intiS number.of.used.pointerdeta; 
char encryption.standard[32]; 
char ovners_name[ variable 1; 

} eoLfomat; 

typede! atruct { 
char id_.tring[ DL_ID_STRIIG LE. 1 : 

int1S dir_list_veraion; 
int16 dir_liat_header_lengthj 
cdblock d1r_llst_lOc; 

intiS dir_list_checkaum; 
i:nt11 pAdJ 

cdblock prev_dir.list; 

int32 dir_list_entry.count; 
} dir_lilt; 

A.4 Directory List Entry format 

typedef .truet { 
int32 dir.number; 
cdblock header_location; 
int32 containing.dir; 
int64 modify. time; 
int64 contained.bytes; 
intiS header_size; 
int1S pad; 

} lilt.element; 

A.1i Directory Format 

_define OIRECTORY.lIFO.vtRSrOI. 1 
typedet atruct { 

int32 directory.info.version; 
int32 directory_info.length; 

int32 directory.entri •• ; 
int32 d1rectory.entry_size; 

} directory_into; 

#define MAX.COMP.LEI 48 
typodef atruct { 

char tile.name[ MAX_COMP_LEI ]; 
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cdblock h.ader_location; 
int64 

int32 

int~'2 

int16 
int16 
intiS 
int1S 

DlQ4ify_t.J. .. ,,; 

file_number; 

""1e_vil!!ll"sion; 
file_type; 
header_size; 
ac1dname_ count; 
pad; 

} dir_contenta; 

A.6 File Header Format 

adefine FILE_TYPE 1 
#define DIRECTORY_TYPE 2 
adefine SOFT_LIIK_TYPE 3 
#detine FRAGMElTED_TYPE 4 
#define ADOIAME_TYPE 6 

#detlne PH_ID_STRIIG_LEI 8 
#detine PH_ID_STatlG "\237\001\CDFS\255\OOO" 

.d.~in. HEADER_VERSIOI 1 

typed.f struet { 
char id_string( FH_ID_STltIIG_LEI ]; 
int.1A h •• d.r_v.r.ioft; 
int16 header_length; 
int16 header_checksum; 
int1S til.header_length; 

cdblock tileheader_location; 

int32 
intiS 

int16 

int1S 
int1t1 
int1S 
inti6 

} tileheader; 

tile_number; 
file_type; 

A~e ••• _info_ot1 •• tj 
backup_info_offset; 
file_into_offset; 
site_into_offset; 
property_list_offset; 

#define ACCESS_IlFO_VERSIOr 1 
adetine GltOUPLEI 32 
adefine OWrERLEr 32 

typedef struct { 
int16 
inti6 

char 

access_info_version; 
access_info_length; 

file_owner(OWlERLEI); 

char 
1nne 

} access_info; 
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tila_group(altOUPLEI]; 
%11e_access; 

.define DOW'_DIR_CHAR 0376 
'define UP_DIR_CHAR 0375 

'detine BACKUP_llFO_VERSIOI 1 
typedef struet { 

intiS 
int1S 

backup_into_version; 
backup_info_length; 
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int32 containins-directory_number; 
cdblock previous_version_location; 
cdblock preYioua_eot_1Qcatlun; 

int16 filename_off.et; 
intiS previouI_verlioD_header_Biz.; 
char backup_pathname r variable J; 

} backup_info: 

_define FILE_IlFO_VERSIOr 1 

typedef struct { 
int16 
int16 

edblock 
int32 
int64 
int64 
int32 

} file_info; 

file_info_version; 
tile_info_lengt.lLj 

tile_location; 
file letlj!;th; 

write_tille; 
ereatioll.. till.; 
tile_veroion_number; 

/* If block is a soft link, ule lott_link_into 
• to decode file_info */ 

'define SOFT_LIIK_VERSIOI 1 
typed.f atruct { 

int16 
int16 

ooft_link_into_veraion; 
aott_link_info_length; 

int64 creation_time; 
int32 target_dir; 
int32 tarset_ver.iQn; 
char target_namer variable J: 

} 8ott_link_info; 

#define SITE_IlrO_VERSIOI 1 
typedet struct { 

intI8 site_into_version; 
int16 aite_info_length; 

char opsys [16]; 
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char 
(;har 

} site_intoi 

opsys_version[16] ; 
site_nameC variable J; 

#d.fin. PROPERTY_LIST_VERSIO. 1 

typ.def struct { 
int32 property_list_version; 
intiS property_list_length; 

typede! struct { 
int18 prop.rty_na •• _l.n; 
int18 property_value_len; 
char property_nam.[ variable ]; 
char property_valuer variable ]; 

} property_list_record; 

A.7 Fragmented files file map 

#d.tine STRIP_I8FO_VERSI08 1 

typedef 8truCt { 
int32 
int32 

strip_in1o_verlion; 
Btrip_info_l.ngth: 

int32 strip_count; 
} strip_info; 

typed.t struct { 
cdblock loco 
int32 valid_(;hara; 

int32 ordinal; 
} fragmented_des; 

A.S Directory Format 

#define DIRECTORY_lIFO_VERSIOI_ 1 
typedof Itruct { 

int32 directory_into_version; 
int32 directory_info_length; 

int32 directory_entries; 
int32 directory_ontry_size; 

} direetory_in~o: 

#define MAX_COMP_LEI 48 
typed,: struct { 
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char file_namer MAX_CaMP_LEI ]; 
cdblock header_location; 
intS4 modify_tim.; 
int32 file_number; 
int32 

int32 
int16 
int.tA 
intiS 
int1S 

} dir_contonts; 

tile_Bize; 
file_verlion; 
file_type; 
h4!la.d.r_lIi~.; 

addname_count; 
pad; 

B WOFS Specification 

R.1 Time and wblock structures 

typedef struct { 
u_long high; 
u_long low; 

} int64; 

typedef int64 wtime; 

typedef struct { 
u_long block: 
u_short offset; 
u_short pad; 

} wblock; 

B.2 File System Block 

'define FS_BLOCK_FLAG "\237\200\005\000" 

.define FS_EOT_TYPE 1 
'define FS_DL_TYPE 2 
'define FS_FH_TYPE 3 
'define FS_DIR_TYPE 4 

'define FS_HEADER_SIZE (4 + sizeof(wblock) 
+ 2 • sizeof(u_short» 

'define FS_DATA_SIZE \ 
BLOCK_SIZE - FS_HEADER_SIZE 

typedef struct { 
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char 
wblock 
u.short 

flag[4]; 
loc; 
type; 

u_short chain.count: 

1* self *1 

char data[ FS.OATA.SIZE ]; 
} tS.block; 

B.3 Flags and other definitions 

#define EDT.FLAG 
#define DL.FLAG 
#ddine OI.FLAG 
#define FH.FLAG 

1 
2 
3 
4 

B.4 End of Transaction 

#define EDT. VERSION 2 
typedef struct { 

u.long flag; 

u.short eot.version; 
u.short eot.length; 

wblock current.dir.list; 
u.long prev.eot.loc; 
u.long next.eot.loc; 

wtime filesyste~creation.time; 

u.long trans.number; 
wtime trans_start. time; 
wtime t~ana.end.time; 

u.long files.written.on.trans; 
u.long dlrs.WTltten.on.trans; 
u.long next.tree.file.number: 

cnar volume.name[32]; 
char encryption.standard[32]; 
char owners.name 

[FS.DATA.SIZE·128]: 
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B.5 Directory List 

'define DIR.LIST.VERSION 3 
'dttl!m. MAX.COMP .SIZE 80 

typedef struct { 
u.Iong nag; 
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u.short dir.Iist.version: 
u.short dir.list.header.length; 

u.long d1r.list.entry.count; 
} dir.list.info; /* array follows *1 

typedef struct { 
u.long dir.number; 
wblock header.loc; 
u.long containing.dir; 
wtime modify. time; 
int64 contained.bytes; 
u.short header.size; 
u.short pad; 

char name[MAX.COMP.SIZE]: 
} dir.list.element; 

B.6 Directory format 

/* 
• A dir is a normal file in which 
* the contents consist of a 
* dir.info header followed by a an 
* array of dir.contents. The 
* length stored in the file. info 
* structure of the file.header is 
* equal to sizeof(dir.info) + 

* dir.entries * dir.entry.size; 
*, 

'define DIR_INFO.VERSION 2 
typedef struct { 

u.long flag; 
u_long dir.info.version: 
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u.long dir.entrie.; 
u.long dir.entry.size; 

} dir.info; 

typedef struct { 
Ch4X" 

llblock 
lltime 
u.long 
u.long 
u.short 
u."hort 
u.short 

file.name[KAX.COHP.SIZE]: 
header.loc: 
modify. time: 
fUe.nUJllb"r; 
file.length; 
file. type; 
header.size; 
addname.count: 

u.short pad; 
} dir_contenta; 

B.7 File Headers 

/* Define tile types */ 

Idefine NOTHING. TYPE 
.define FILE. TYPE 
.define DIR.TYPE 
#define LINK. TYPE 

'define HEADER. VERSION 2 
typedef struct { 

u.long flag; 

o 
1 
2 
3 

u.short header. version; 
u.short header.length: 

u.long file.nuaber; 
u.short file.type: 

u.short access.info.offset; 
u.short access.info.length: 
u.short backup.info.offset; 
u.short backup.info.length; 
u.short file.info.offset; 
u.short file.info.length; 

Simson L. Garfinkp.l p.g.. 16 

u.short site.info.offset; 
u.short Slte.lnto.length; 
u.short property.info.offset; 
u.short property.info.length; 

} fileheader; 

'detine UNIX.ACCESS.INFO.VERSION 1 
'define NAME. LEN 32 
typedef struct { 

u.10ng access.info.version: 

char file.ovner[ NAME. LEN ]: 
char tile.group[ NAME. LEN J; 
u.short unix.access; 

} access. info ; 

/* backup info defines *1 
'define BACKUP. INFO. VERSION 2 
typedef struct { 

u.long backup. info. version; 
u.long containing.dir.number; 
wblock prev.version.loc; 
u.10ng prav.eot.loc; 
u.short prev~version.header.size; 
char filaname[MAX.COMP.SIZE]; 

} backup.info; 

'defina CONTIG.FILE.INFO.VERSION 1 
'define FRAG.FILE.INFO.VERSION 2 

t·ypedaf struct { 
u.10ng fila.info.varsion; 

wblock 
u.10ng 
wtime 

contents; 
byte.count; 
write. time; 

wtima creation. time; 
u.long file.version.number; 

} file. info ; 
typdef file.info frag.file.into; 

1* In a fragmanted fila: 
* contants . 1oc of frag.des array. 
* byte.count • size of the array. 
*1 
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typedef struct { 
wblock loc; 
u.long valid.chars; 
u.long ordinal; 

} frag.des; 

#define LOG.FILE.INFO.VERSION 3 
typedef struct { 
u.long file.info.version; 

"block entry; 
u.long entry.bytes; 
"time entry.time; 

"block prev.header; 
u.long total.bytes; 
wtime creation. time; 
} log.file.info; 

1* If file.header is a soft link, 
* use sOft.link.info. 
* to decode the file. info *1 

1* As denoted in symbolic links *1 
.define DOWN. OrR. CHAR 037~ 
'define IlP.DIR.CHAR 0375 

'define SOFT.LINK.VERSION 3 
typAdof stru~t { 

u.long soft.l1nk.info.version; 

int64 creation. time; 
u.long target.dir; 
u.long target. version; 
char tarset.nameC 256 ]: 

} soft.link.info ; 

'define FIRM.LINK.VERSION 4 
typedef struct { 

u.long firm.link.info.varsion; 

int64 creation.time; 
u.long target.dir; 
u.long target.version; 
u.long target.filenumber; 

} firrn.link.info ; 
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'define SITE.INFO.VERSION 1 
typedef struct { 

u.long site.info.version; 

char 
char 
char 

} site.info : 

opsys[ 16 ]; 
opsys.v[ 16 ]; 
s1 te.name [ 64 ]; 

'define PROPERTY.LIST_VERSION i 

typedef struct { 
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u_long property_list_version; 
u.long property.11st.length; 
u.long property.list.entries; 

} prnpArty.list.info; 

'define variable 1 
typodef struct { 

u.short property.name.len; 
u.short property.value.len; 
eh~r property.namo[ variable ]; 
char property.value[ variable ]; 

} property.list.record; 


