o] A4

DRAFT:
The Story of the Write Once File System

Simson L. Garfinkel
IRIS
Brown University

© August 1, 1087

Abstract

This papers describes two file systems which were
designed for use with write-once media: The
Compact Disk File System (CDFS) and the Write
Once File System (WOFS). CDFS was designed at
the MIT Media Laboratory during the summer of
1985 and was successfully used to master five
CDROM disks. Although CDFS was intended for
use with write-once media, several design flaws
prevented this possibility. The Write Once File
System, desigued during the summer of 1987,
corrects the flaws of CDFS.

This paper also describes an application
program written using CDFS which exports CDF$
file systems to remote computers via a high speed
network and Sun Microsystem’s Network File
- System (NFS) protocol.

This paper i3 divided into chapters. Each
chapter designs a particular project involving one
of the above file systems. For the purpose of
reprinting, irrelevant chapters may be omitted.

The research described in this paper performed
at the MIT Media Lab was made possible by a
grant from IBM.

J. Spencer Love, formally of’ MIT Information
Systems, contributed significantly to the design of
CDFS.

1 Introduction

In Spring 1985, T was employed ag an
undergraduate researcher at the MIT Media
Laboratery’s Electronic Publishing Group.! That

spring, the laboratory received a Sony CDU-1

prototype CDROM reader. Walter Bender, my
research advisor, asked me if I would like to
experiment with the unit.

For many years, the Electronic Publishing
Group (formally called the Architecture Machine
Group) had been interested in optical storage
devices, in particular optical video disks, both
becaunse of the large amount of available storage
and the relatively low access times when compared
with other media, such as videotape.?

The CDU-1's minimal documentation
indicated that the drive could read 2K blocks from
a “CDROM?” disk, each which was identified by a
minute, second and block number. We tried an
audio disk in the player and discovered that audio

1An ipnovative program at MIT, “UROP” (urndergradu-
ate research opportunities program), allows undergraduates to
participate in research projects in the Institute’s departments
and laboratorics,

20ne of the Group’s earlier projects, “Aspen,” allowed a
person sitting in front of a touch sensitive monitor to “drive”
a simulated car around the streets of Aspen, Colorado. To
perform the demo, over 20,000 different views of the city had
to be stored on a video disk. This was one of the first uses of
interactive video disks. Other projects by the group included
the use of write-once video disks in animation.

WOFS

disks were not in the CDROM format. The test
disk which Sony had been provided contained
approximately 10MB of test patterns on it; the rest
of the disk was blank. “I wish they had asked me
what to put on the rest of the disk,” a graduate
student said to me. “I would have given them
pictures.”

We soon realized that in order to use our new
CDROM player, we were going to have to make our
own disk. The next question was how to arrange
the information on the disk. In Spring 1985,
neither Digital's UNIFILE CDROM format nor the
High Sierra standard existed. Such standards were
under development at the time, but we were largely
ignorant of such efforts. Without pre-defined
standards, the author decided to develop his own.

A simple way for us to have used our CDROM
player would have been to master a CDROM that
contained an exact, block-for-block disk image of
an existing file system. With such a disk and a
block level device driver, we could read the disk as
a read-only file system on the same computer from
which the data was originally created. Other
computers could read the disk by using a suitable
conversion library or through some sort of
operating system independent network file systern
such as Sun Microsystem's NFS.

The problem with the disk block image
approach was that it would not be extensible to
write-once optical devices as they became available,
and the group’s experience with video disks led us
to believe that write-once devices would soon be
available. Although applications such as
encyclopedias and maps would work fine with large
read-only databases, other projects which we were
interested in, such as personalized newspapers,
would not. “It's much more interesting to think
about what you can do with a 300MB database
that is constantly growing,” I told Dr. Bender,
“than to think about all the ways to access 300MB
of static data. Another application I was interested
by was the possibility of using a write-once optical
disk system as a personal, portable mass storage
system for coherent use with the wide variety of
computers available at MIT.

Simson L. Garfinkel page 2

Over the next six months, under the
supervision of Dr. Bender, I developed a file system
for use with Write Once Media. At first, the effort
consisted largely of late-night design meetings with
J. Spencer Love, then a system programmer at
MIT Information Systems, trying to devise a way
to efficiently store and retrieve information from a
write-once media. By the middle of the summer [
had started on the file aystem’s first
implementation, which first became operational on
August 15, 1985.

Since write-once drives and media were not
available to use at the time, I developed the file
system using a write-once simulator. The simulator
presented the file system implementation with the
appearance of a write-once device using a file
resident on a magnetic disk. When we started
mastering CDROMs later that year, we discovered
that the simulator system doubled as an excellent
mastering system: the simulator file, copied to a
nine-track magnetic tape in ANS! format, was all
that was required by 3M corporation to master our
CDROMs.

1.1 Design goals

Qur two primary goals in designing the file system
were:

1. That the file system operate with the same
level of performance with any size of
write-once media, whether it be a 50MB
optical card, a 650MB write-once CDROM, or
a 0GB jukebox or optical platters, aud that
this performance be comparable to
performance obtained with magnetic media.

and

2. That performance of the file system would not
degrade as a disk became filled with files and
directories.

Since we didn't have a write-once device
during the design process, we decided that we had

WOFS

to make as few assumptions about the physical
uature of write-once media as possible. 1'he only
assumptions that we made were that sequential
blocks of data could be written to the write-once
device, that the block slze used by the device would
be a constant from the first block to the last
(although no specific block size was assumed), that
blocks once written could be read in any order, and
that the write-once hardware could determine
whether a block had been written or was virginal.

We did not assume that blocks could be
invalidated or destructively written after the initial
write operation. We further did not assume that a
media would be consistently mounted on the same
operating system or computer: that is, we wanted a
person using, our file system to be able to freely
move an optical platter from one computer to
another, even if the two computers used different
operating systems.

This first version of the write-once file system
was finished in September 1985 and was called the
Compact Disk File System (CDFS), it’s name
indicating that it was designed primarily for use
with compact disks (In 1983, the author had
foolishly hoped that hardware vendors would be
supplying consumers with devices which would be
able Lo record in the audio CD and CDROM
format.}) The implementation was written in
portable C code and operated without modification
on Digital Equipment Corporation’s VAX series of
computers under UNIX, Sun Microsystem’s
workstations, and on IBM Personal Computers.

During the following year and a half, CDFS
was used to master four CDROMs at the MIT
Medla Laboratory and one CDROM at Brown
University’s IRIS project.®

In December 1986 and January 1987, I
developed a read-only CDFS implementation, the

3The four MIT CDROMe consisted of an initial test disk,
a disk containing a copy of the CIA’s World Databank II and
associated information, and two disks of encoded motion se-
quences for the group’s “Movie's of the Future” project. The
TRIS disk consisted of the Thesanrus Linguae Ciraecae Data
Bank (all remaining greek documents from the ancient world)
and associated index files.

Simson L. Garfinkel page 3

Micro-CDFS, to preve to Dr. Bender that it could
be written in less than 10K of object code, hence
the name. (The actual MCDF$ implementation
was less than 5K of object code and provided
complete emulation for all of the UNIX system
calls to access files in a read-only fashion.)

In the Spring of 1987, several research groups
at MIT acquired write once devices and an initial
attempt was made to use the CDFS. At this time,
the author discovered that a basic assumption
made by the CDFS implementation—that write
operations to the optical media were completely
reliable—was invalid. Design of a new version of
CDFS (later named WOFS (Write Once File
System)} with the assistance of James Anderson of
MIT’s Project Athena was commenced at that
time, but final implementation was delayed until
the author finished his undergraduate thesis* and
graduated from MIT.

In June 1987, I was employed by the RIS
project at Brown Unjversity to write a program to
allow the CDROM mastered in the CDFS format
to be accessed via Sun Microsystem’s Network File
System. Because the project was designed to access
CDROMs, the program (CDFSD ~ Compact Disk
File System Daemon) only implemented the NF¥S
procedures necessary for read operations. ‘The
read-only NFS server can be operated on any BSD
4.2 (or later) UNIX computer which supports sun’s
portmapper RPC protocol and has a device driver
capable of reading blocks from a CDROM player.
It is currently in use with an IBM RT/PC
workstation.

In July and August 1987, the author
completed the development of WOFS.

‘Radio Research, McCarthyiam, and Paul F. Lazarsfeld,
Simson L. Garfinkel, undergraduate thesis, Massachusetts In-
stitute of Technology, June 1987.

WOFS

2 The Compact Disk File
System

2.1 How CDFS works

CDFS arganizes write oparations to the media as a
stream of sequential block writes. No blank blocks
are left in the anticipation of future block writes.
CDFS’ approach divides a disk into two discrete
regions: one in which blocks have been recorded
and one in which they have not. The file system
implementation keeps record of where the dividing
point between these two regions is by locating the
last written block and maintaining that location
during the eource of all operations,

When the implementation mounts an optical
disk, it first reads the first block on the disk which
contains a special block called an End Of
Transaction (EOQT) block. The EQT contains, in a
fixed byte-order representation, an 8 byte flag
which identifies the disk as a CDFS-format disk
and containe other important informativn. (The
full CDFS EOT specification is presented in
Appendix A1)

The Erd Of Transaction block is so callad
because it is the last block written to the disk when
the disk is dismounted. The disk blocks between
suceessive EOTs record all changes made to the file
system resident on the disk for a particular use
session (called transactions).

After locating the first EOT on the disk, the
implementation next locates the last written block
on the disk? which should be another EOT, the last
EOT written to the disk.

The EOT belongs to a class of objects called
Sile system structures. File system structures are
blocks of data, recorded by the file system
implementation on the disk, which are decoded by
the file system implementation and used by the
implementation to locate and retrieve data which

$Locating the last written block on the disk is accomplished
by a binary search across the media.

Simgon L. Garfinkel page 4

had been previously stored. Other file system
structures include Directories, File Headers and
Directory Lists.

File system structures contain pointers to
other file systems structures on the same media.
These pointers are called ¢dblock pointers, and
reference a particular block number and offset
within that block. By allowing cdblock pointers to
reference exact bytes, the CDFS specification allows
multiple file system structures to be packed within
the same logical block, although this possibility was
not exploited in our first implementation.

The most recent EQT on the disk contains a
pointer to the most recent Directory List on the
disk. The Directory List contains an array in which
each element of the array identifies a directory on
the disk and has a cdblock pointer to the most
recent version of that directory. (The full CDFS
Directory List specification is presented in
appendix A.2.) Similarly, each directory on the
disk contains a cdblock pointer to the most recent
version of every file it contains.

The Directory List is the key to an efficient
implementation of a modifiable hierarchical file
system on a write-once disk. Since CDFS stores
both files and directories on the same write-once
media, it is necessary to rewrite a directory
whenever a file contained within it is added,
deleted, or modified. The Directory list eliminates
the necessity of having to additionally rewrite all of
the containing directories. Since the Directory List
contains a cdblock pointer to the most recent
version of each directory on the disk, directories are
located vig the directory list, rather than from
pointers in their containing directories. When the
location of a directory on the disk changes (as
happens when the directory’s contents are
changed), it is necessary only to rewrite the
Directory List to still retain a pointer directly to
the most recent version of the directory. Without a
Directory List, a modification to any sub-directory
within the file hierarchy would require rewriting
every directory above the madification, including
the root directory, which would greatly increase the
overhead of the file system. The Directory List is

WOFS

designed to be compact to further decrease storage
requirenients.

In practice, write operations to the optical disk
are batched in groups called Trausactions. During
a Transaction, new files are written to the disk as
they are created, but changes to their containing
directories and the Direclory List are buffered in
memory. At the close of the Transaction, all
modified directories, the Directory List, and a new
EOT are written and the disk can be removed from
the drive. In the event of an interrupted
Transaction (such as a power failure or removal of
the disk from the drive before dismounting), the
File Header which is written with each file contains
enough information to reconstruct the directories,
Directory List, and EQOT which had not yet been
written.

2.2 Two Example Transactions

Although the CDFS standard does not specify the
order in which Transactions should occurs, most
implemantationg will follow a process similar to
example outlined bellow,

In this example, the write-once media starts
blank. In the first Transaction, the two files, life.c
and wheel.c are written and placed in the root
directory. In the second Transaction, a new version
of the file life.c is written. This example
Transaction is intentionally simple.

As defined in the standard, the first block on.
the disk must be an EQT, During the course of the
first transaction, the two files are written to the
disk. When the transaction is completed, the
CDFS§ implementation writes a new copy of the
root directory to the digk, a. new Directory List,
and a new EOQT. The EOT contains a pointer to
the Directory List, which contains a pointer to the
root directory, which contains pointers to each of
the files. The state of the disk at the completion of
the first transaction is depicted bellow:

The following blocks were written on the first
transaction:

Simson L. Garfinkel page 5

o first EOT on disk (superblock)

"life.¢” flehesdar and contents

[

»

a “wheel.c” fileheader and contents
4 root directory

E- 8 directory lint

E 8 last EOT on disk

(blanke follow)

Figure 1: Direct Read After Write disk after a sam-
ple transaction

0 The first block of a CDFS disk contains an
EQT, which identifies the disk as a CDFS disk.
This block also contains the name of the disk’s
ownper, the time of the disk’s creation, the
name of the site which created the CD aud
other interesting information.

1 The file life.c is stored contiguously, preceded
by its File Header. Since the File Header
contains a cdblock pointer to the contents of
the file, the Fila Header could equally well be
written after the file. The file begins in the
same block as the header and extends for two
blocks.

3 The file wheel.c is the second file on the CD,
stored as file header followed by file contents.
The file and its contents fit within the single
block.

4 The root directory follows. The directory
contains a cdblock pointer to each file within
it, ¢cdblock pointers are drawn as arrows in
this example.

5 The Directory List follows the directories, It
contains a cdblock pointer to each directory

on the disk.

6 An EOT is the last block written to the CD. It
contains a cdblock pointer ta the Directory
List.

The section transaction takes place
independently of the first. At the start of the

WOFS

o firet EOT on disk (superblock)
1 Mifa.r" filahaader snd comtents
2
— a “wheel.c” filehasder snd contents
4 J rems dirvesacy
5 .j directory list
8 J EOT
T l Life.¢ (second version)
&
9
10 roos directory (second varsion)
[':' 11 diractory list (second version}
E 12 lass BOT on disk

(Blanks follaw)

Figure2: Direct Read After Write disk after a second
sample transaction. Arrows on the left hand side
trace pointers from the EOT to the most current
version of each file. Arrows on the right hand side
frace pointers to previous versions.

second transaction, the implementation reads the
firat and the last blocks on the disk. A new version
of the file life.c is written to the disk and the
Transaction is ended, which causes a new root
directory, Directory List and EQT to be written.
After the second transaction a schematic view of
the optical media would looks like figure 2.

While no blocks on the disk have been
changed, the last EQT commences a chain of
pointers which points now to the newest version of
each file, because the definition of “the last EOT”
has changed.

The blocks that were written on the second
transaction include:

7 The first file written on the second transaction
is the updated version of life.c. The new file
header of life.c contains a pointer to the
previous version (shown on the right). The
new version of life.c is three blocks long.

10 The new version of the root directory contains

Simson L. Garfinkel page G

cdblock pointers to the most current version
of each lile within it. Note that directories can
(and often do) reference files which were
written on previous Transactions,

11 The Directory List is written after the root
directory. It contains a pointer to the most

recent version of that dircctory.

12 The FEOT block is written last. It contains a
pointer to the most recent Directary List, It

also contains a pointer to the previous EOT.

2.3 Design choices made in CDFS

The design choices made in developing the CDFS
were based both upon the desire for the file system
to efficient and for the file system to be usable in an
environment of heterogeneous operating systems,
hardware vendors and administrative policies. A
secondary goal was to provide substantial amounts
of redundant information in the filesystem so that
information could be easily — even automatically
— recovered from damaged disks.

The design of the CDF'S file header clearly
illustrates how our concerns translated themselves
into the file system structures. CDFS file headers
average over 240 bytes in length — substantially
larger than the equivalent structures in other
operation systems (for example, UNIX inodes), but
still very small when compared to the average size
of files on an average computer or when compared
to the amount of space available on optical media.
CDFS uses the space to store on a per file basis
information which traditional operating systems
store once per magnetic disk. (The specification for
the CDFS file header is given in appendix A.6).

For example, the CDFS file header includes
the full user name of the person who created the
file (rather than merely storing the user’s
“number,” as the UNIX file system does, or storing
nothing at all, as the MSDOS and Macintosh file
gystems do, assuming that all files on the same
computer are owned by the same user), the site
name of the computer which created the file, and

WOFS

backwards pointers to the previous version of the
file and the last EOT on the disk when the file had
been written. By storing the site name on a
file-by-file basis, CDFS allows the possibility that
files from multiple sites may be stored during the
course of a single transaction (as would be the case
for a networked CDFS file server or archiving
service). By storing the full user name, rather than
just a number, the standard allow a disk to be
moved to a site where the user name to user
number mapping is not known without sacrificing
legibility of the file list command.

By explicitly assigning a version number and a
known length to each file system structure, the
CDFS specification allows the possibility for
extension to be made within the context of the
existing standard. For example, files which are
actually links to other files are implemented as
different version of the file_info structure iu Lhe

file header.

While data transfer rates to and from optical
disks are very high, head repositioning time is very
slow. CDFS is designed to minimize the number of
head repositioning events necessary to read
information from a disk,

2.4 Advantages of CDFS Over
Traditional File Systems

The principle advantage of using write-once optical
media over magnetic media (besides the increased
storage space), is the ability to recover any file or
document that was ever stored. Even if a file is
updated by a later version or if it is “deleted” from
its containing directory, it is in principle always
possible to find the original document. CDF$§
realizes this possibility by providing specific
interfaces for locating previous versions of files or
for “undeleting” files after they have been deleted.

Since blocks, once written, are never changed,
the process of performing an incremental backup of
a CDFS disk is simplified considerably over
magnetic file systems: the disk’s newly written
blocks are merely copied, block-fer-block, to the

Simson L. Garfinkel page T

backup disk, which after the backup becomes an
identical copy ol the “working™ disk.

Use of CDFS allows the same media standard
to be used for archives, backups, working files and
transportation of data. A single, unified set of
utilities can then be employed for all file operations.

3 CDFS CDROMs and the
CDFS/NFS Server

Farly in the CDFS development effort, we
recognized clear advantages to using the same file
system standard for read-only and write-once
optical storage devices. Beyond the ability to use
the write-once system as a mastering platform for
the read-only disks, using the same file system
standard allows same software which was used to
create the read-only disk to retrieve the
information. Another exciting possibility allowed
by using the same file system for read-only media
as for write-once is that of using write-once media
as a publication format, to which a user can add
new information (such as personal comments or
updates) in a similar manner to the way a user can
write in the margins of a book with a felt tip pen.
Possibilities such as these led the Electronic
Publishing Group to adopt CDFS as our standard
for CDROMs in Fall 1985

After the Electronic Publishing Group made
its first CDROM, the author was contacted by Paul
D. Kahn at Brown University's TRIS group,
requesting help in making the TLG CDROM
mentioned above. The disk was pressed in spring
1986 and a variety of application programs were
written to use it. The programs accessed the
information on the CDROM via the CDFS
subroutine library. During the sumimer of 1987, the
author moved to the IRIS project as a temporary
systems programmer to write a program to allow
the TLG CDROM to be read via the Sun
Microsystems Network File System (NFS) protocol.

The program, the Compact Disk File System
Daemon (CDFSD), allows a CDFS mastered disk

WOFS

to be read (from any computer which uses the Sun
NFS protocol) as if it was a standard unix file
system. Logically, CDFSD incorporates the CDFS
subroutine library into the operating system’s
kernel, allowing the subroutines Lo e removed
from user level programs.

3.1 NFS

NFS is a layered system which allows one computer
to access files on a remote computer as if they were
mounted locally. NI'S is based upou Sun
Microsystem’s Remote Procedute Call (RPC)
library, a system which allows one computer to
execute functions vo avother. RPC is, in turn,
based upon Sun’s External Data Representation
standard (XDR), which allows computers of from
different manufactures using different byte ordering
systems to exchange all types of data in a
byte-order, word-size independent fashion.®

In the working NFS system computers are
classified ag servers and clients. A server is a
computer which maintains a file system locally and
makes the files in it available to other
computers—the clients—via the network. Although
the operating system (the kernel) of the client must
be modified to recognize which file operations
should be performed locally and which translated
intu RPC calls, the server can be implemented as a
user level program with no modifications to the
server’s operating system.”

*Sun was required to write XDR since the computer which
their early products were based upon, the Motorola 68010,
was a low-byte first byte ordered machines, while ather ma.
chines owned by Sun’s targeted customers were high-byte first
ordered machines.

CDFS (and WOFS) implements its own byte-order indepen-
dent external data representation standard which, while not
as comprehensive as Sun Microsystems, is margirally faster
in execution. CDFS adopted VAX byte-ordering. WOFS
changed the byte-ordering to 68000 byte.ordering. When
CDFS monnts a disk, it examines the byte-ordering used on
the disk and can reverse its byte-ordering on the fly.

"In practice, the NFS server is written inte the server’s op-
erating system to provide direct access to file system structures
(in particular, unix inodes) and to improve performance.

Simson L. Garfinkel page 8

The NFS system actually consists of two
protocols: MOUNT and RFS3 (Rewmote File
System). The MOUNT protocol provides a means

for servers to identify to clients what filesystems
are candidates for file sharing. MOUNT also allows

servers to monitor clients which are using which
shared file systems, principally to allow
notifications to be sent to clieuts when servers are
about to be withdrawn from service. The MOUNT
protocol’s only interface with the actual file system
is to return upon request to the client a fhandle to
the root directory of any given file system.

RFS is the protocol in which performs the
actual mapping from operating system service calls
on the client to RPC calls which are executed on
the server. The basis of the RFS protocol is the
fhandle concept. A fhandie is a 32 byte opaque
data “cookie” which is passed between a server and
a client to jdentify files and directories used in RPC
operations.

When an NFS file system is mounted, the
MOUNT program returns to the client 2 thandle
for the server’s root directory (or the root directory
of a particular file system.} This fhandle is then
returned to the server, by the client, when other
operations, such as read directory, or lookup file in
directory, are requested. KI5 is stateless, in that a
fhandle uniquely identifies a file or directory even
if the NFS server is restarted (for example, after a
system crash). If the client waits for the server to
restart, it can continue operations as if nothing had
ever happened.

3.2 Compact Disk File Systern Daemon

The Compact Disk File System Daemon (CDFSD)
is a user level program which implements the server
side of both the MOUNT and RFS protocols.
CDFSD accepts and responds to RPC requests
using Sun Microsystem's sve, regiater(),
sve.run(), and svesendreply()+ RPC library
functions, Since no provisions are made in their the
RPC or the NFS protocols for multiple server
processes on a single host (for example, by

WOFS

assigning multiple program numbers to NFS servers
or allowing NFS to use arbitrary UDP port
numbers), CDFSD cannot coexist on a machine
which is also a unix-filesystem NFS server.

Unlike a unix fhandle, which consists of a file
system number and an inode number, the CDFSD
fhandle consists of the following information:

¢ The file number.
¢ The containing directory number.
The drive number.

The file header location.

Although the CDFSD file number and
containing directory number can be derived from
the file header location, incorporating this
information into the fhandle eliminates the
necessity of having to read the referenced file’s file
header before the RPC call can be serviced. The
overhead of including this information is negligible
to the server and zero to the client.

CDFSD implements the following RFS
procedure calls:

RFS NULL This procedure does nothing and is
used for timing.

RFS_GETATTR This procedure returns
attributes for a file or directory. It is the RPC
implementation of the unix stat{) and fstat()
calls, The CDFSD implementation necessarily
performs translation between CDFS file

headers and unix stat buffers (which are used
by NFS).

RFSIL.OOKUP This procedure performs the
translation between file names and fhandles.
It is the vuly RFS procedure Lhat creates
fhandles.

RFS READ This procedure reads a requested
number of bytes in a file from a given starting
location. As CDFS files are stored

Simson L. Garfinkel page 9

contignously, this procedure merely counts
from the start of the file the requested offset
and then copies data directly from the
CDROM to the RPC reply buffer.

RFS_ READDIR This procedure is used by NF§
to read the contents of directories in a
opcrating system independent manner. Thia
procedure necessarily performs the translation
between the CDFS and unix directory
structure directories, which NT'S uses.

While UNIX directories contain only file
names and inode numbers, CDFS directories
contain additional information (such as file size
and last modification date). This additional
information was intentionally placed in the
directory structure to speed extended directory
list commands (e.g. the MSDOS “DIR”
command or the UNIX “Is -]” command) by
eliminating the need for the optical disk to
seek to each file header when a directory list
command is executed. Unfortunately, since
NFS is basically a translation of the UNIX file
system to RPC subroutines, this additional
information is not useful to CDFSD.

RFS_STATFS This procedure returns
information about the CDFS file system.

3.3 Caching and Performance

CDROM performance (and performance of optical
storage systems in general) depends on two factors:
how long it takes for the drive’s read head to

traverse the surface of the media to the correct
black an the disk (seek time) and how long it takes

to transfer data from the disk to the host computer
(transfer time). CDFSD employs two forms of
caching to improve subjective performance: block
caching for blocks containing file system structures
and read-ahead caching for data transfers.

All CDFSD procedures call the function
cd.read. to transfer data from the CDROM to the
computer. The third parameter of the ed_read_

function is an integer flag which is used to
differentiate reads of file system blocks from reads

WOFS

of user data. cd_read. maintains a 300 block
associative cache for all read operatious of file
system structures., This cache dramatically
improves performance of file system operations
such as “open file,” and “read directory,” by
changing them from disk-to-memory transactions
to memory-to-memory transactions. This cache is
invisible to the procedure calling cd_read.. .

When cd.read.. is forced to read a block of
data from the disk, it reads severa] blocks at a time
into a read ahead cache. If successive read requests
are for a block in this read ahead cache, cd read_
does not have to perform another physical read,
This cache dramatically improves performance of
reading user data from files, since the time required
to read two blocks from the CDROM is negligibly
more than the time required to read one block.
This cache is also invisible to the procedure calling
cd_read.. .

In comparison between the CDFSD and the
standard NFS daemon operating from a magnetic
file system, we find that many operations involving
small files are marginally faster with the CDROM
(definitely a result of the block caching) and
sustained read operations involving large files are
marginally slower with the CDROM (owing to the
slower transter rate from CDROM to computer,
when compared with magnetic.)

4 The Write Once File System

When MIT received its first shipment of optical
drives and media in Fall 1986, the author
discovered a serious flaw in the design of the CDFS
implementation: no provision was made for failed
writes on the optical media. Althuugh ihe CDFS
standard was insensitive to this oversight, the MIT
Media Laboratory’s implementation depended on
disk write operations being perfectly reliable,

During the summer of 1987 the CDFS§
implementation was completely redesigned to allow
for failed media writes. At the same time, the
CDFS standard was substantially revised based on

Simson L. Garfinkel page 10

the accumulated knowledge over the previous two
years. These changes substantially reduced the

complexity of the file system implementation. In
recognition of the substantial changes, the file
system was renamed the Write Once File System.

4.1 WOFS changes to the CDFS

standard

The principle difference between the WOFS and
the CDFS is the adoption of a new kind of file
system structure called a “file system block,”
(fsblock for short). An fsblock is a 16-byte header,
containing a flag, a self-referential pointer, a type
identifier and a chain count (see appendix B.2)
which identifies a block on the optical media as a
block in which file system structures are stored. By
moving all CDFS self-referential pointers to a new
layer procedure layer between the hardware device
driver and the CDFS subroutine library, CDFS was
greatly simplified. Other changes made to the
standard include:

o Giving explicit lengths to all variable length
file system structures.

o Inclusion of the directory name into each
directory list element of the directory list to
allow resclution of path names without
requiring each directory’s file header and
directory contents to be loaded.

e Lengthening of the maximum file name size
from 48 bytes to 80.

¢ The adoption of a new file type—Log
files—which allows low-overhead append-only
logs to be maintained.

e The implementation of fragmented files.

5 Related Work

Other proposal for the use of write-once media (e.g.
Easton 1985) assumed that write-once hardware

WOFS

would have the ability to invalidate information
previously recorded on the surface or to fill in fields
previously left empty. Time hag shown these
assumptions to be largely incorrect, due to the
nature of the error correction codes employed in
the low level driver hardware.

Nearly all other proposals for the use of
write-once media involve storing directory
information on some form of rewritable magnetic
storage systermn. The Amoeba file gerver [Mullender
and Tanenbaum, 1985] is an example systems of
this type.

A significant excpetion is the recent work on
log files at Stanford University [Cheriton and
Fiulayson, 1986]. Like the write once file system,
the Cheriton and Finlayson’s log files exploit the
characteristics of write once devices rather than
attempting to hid them from the user. The service
they describes “provides efficient storage and
retrieval of data that is written sequentially
(append-only) and not subsequently modified.”
This paper was the inspiration behind the WOFS
log file facility.

6 Refcrences

“Working Paper for Information Proccssing:
Volume and File Structure of CD-ROM for
Information Interchange,” prepared as a working
paper of the CD-ROM Ad Hoc Advisory

. Committee, popularly known as the High Sierra
Group, Optical Information Systems,
January-February 1987,

Log Files: An Ertended File Service Exploiting
Werite-Once Optical Disk, David R. Rheriton and
Ross S. Finlayson, Stanford University, 1986.

“Thermo-Magneto-Optical Disk Promises
High-Capacity, Low-Cost Removable Storage,”
Digital Design, August 1985.

key-Sequence Data Sets on Indelible Storage,
M. C. Easton, Technical Report RJ 4776 (50637),

Simson L. Garfinkel page 11

IBM Research Laboratory, San Jose, California,
July 1985,

Dynamic Linking in a Small Address Space,
M. L. Kazar, S. B. Thesis, Department of Electrical
Engineering and Computer Science, MIT, May
1978.

“A distributed file service based on optimistic
concurrency control,” . Mullender and
A. Tanenbaum, Proceedings of the ACM
Symposium on Operating System Principles, 15-62,
December 1985, The paper that describes the
Amoeba file server,

“A Fast File System for Unix,”
M. K. McKusick, W. . Joy, 5. J. Le(ller and
R. §. Fabry, Berkeley Unix documentation, version
4.2, 1983.

The Multics System: An Eramination of its
Structure, Elliott 1. Organick, MIT Press, 1972,
pages 217-234.

“Compact Disc Digital Audio Systems,” David
Ranada, Computers and Electronics, August 1983.

“Networking on the Sun Workstation,” Sun
Microsystems, Mountain View, CA 94043, 1085

WOFS

A CDFS Specification

A.1 End Of Transaction (EOT) format

typede? struct {
int32 modulo_of_value;
intié biva_ in, valuw;
int16é pad;

} pointerdet;

#define EOT _ID _STRING_LEN 8

#define EOT _ID_STRING “\237\002\CDFS\255\000"
#define EOT_VERSION 1

#define CDFS_IMPLEMENTATION_ID 1

typede! struct {
chax id_string[EOT_ID_STRING_LEN]:

inti8 eot_version;
intié eot_length:

c¢dblock eot_location;

int18 eot_checksum;
int16 CDFS_implementation_id;

cdbluck currsnt_4ir_list;
cdblock previous_eot_location;
cdblock next_eot_location:

inté4 filesystem_creation_time;
int3d2 trane_number;

intf4 trans_start_time;

inté4 trans_end_time;

int32 files_written_on_trans;
int32 dirs_written_on_trans;
int32 next_Iree_file number;

pointerdet pointerdes[16];
int16 number_of . used_ pointerdefs;
char encryption_standard(32];

char owners_name[variable 1:

} eot_format;

Simson L. Garfinkel page 12

A.2 Directory List structures

A.3 Directory List Header format

#detine DL_ID_STRING_LEN 8
#derine DL_ID_STRING "\237T\001CDFS\250\000"
#define DIR_LIST_VERSION 1

typedsf struct {
char id_string(DL_ID_STRING LEW 1:

int16 dir_list_version;
int16 dir.list_header_length;
cdblock dir _list_loc;

inti8 dir_liat_checksum;
intié pad;

cdblock prev_dir, list;

int32 dir_list_entry_count;
} dir_list;

A.4 Directory List Entry format

typedet atruct {
int32 dir_number;
cdblock header location:
int32 containing dir;
int64 modify_time;
int64 contained_bytes;
int1é header_size;
int16 pad;

} list_element;

A.5 Directory Format

#define DIRECTORY_INFD, VERSION_ 1
typede? struct {
int32 directory.info_version;
int32 directory.info_length;

int32 directvory_entries;
int32 dirxectory.entry.size;
} directory_info;

#define MAX_COMP_LEN 48
typedef struct {
char tile_name{ MAX_COMP_LEN];

WOFS

cdblock header_location;

intG4 modify, time;
int32 file_number;
int32 file_size;
int32 Tila_varsion:
int16 file_type:
int16 header_gize:;
int18 addname_count;
intié pad;

} dir_contents;

A.6 File Header Format

#detine
#dafine
#define
ftdetfine
#define

#define
#define

#define
typedet

FILE_TYPE 1
DIRECTORY_TYPE 2
SOFT_LINK_TYPE 3
FRAGMENTED_TYPE 4
ADDNAME_TYPE 6

FE_ID_STRING_LEN 8
FH_ID_STRING "\237\001\CDFS\255\000"

READER_VERSION 1

struct o

char id_string(FH_ID_STRING_LEN 1;
int18 heaader_ version;

inti€é header_length;

int16 header_checkaum:
int1é fileheader_length;
cdblock fileheader_location;
int32 file_number;

intié file_type;

inti18 accenp_ info offset;
int18 backup_info_offset;
int16 file_info_ouffset;
int18 site_info_offset;
int16é property list_offset;

} tileheader;

#define
#define
tdafine

typedet

ACCESS _INFO_VERSION 1
GROUPLEN 32
OWNERLEN 32

struct {

int16 access_info_version:
int18 access_info_length;
char file_owner [OWNERLEN] ;

Simson L. Garfinkel page

char
incle

tile_group[GROUPLEN];
Tile_access;

} access_info;

fdefine
#define

#define
typedet

DOWN_DIR_CHAR QaTe
UP_DIR_CHAR 0378

BACKUP_INFO_VERSIOQN 1

struct {

intisé backup_info_version;
int18 backup_info_length;

int32 containing directory_number;
cdblock previous_version_location;
cdblock previous_eot_locatiun;

inti8 filename_offser;
int16 pravious_version header size;
char backup_pathname[variable];

} backup_into;

#define
typedef

FILE_INFO_VERSION 1

struct {
intié file_info_version;
int16 file_info_lengtl;

cdblock file_location;

intd2 file length:

int64 write_time;

int84 creation_time;

int32 file_version_ numbeyr
} file_info;

13

/* If block is a soft link, use soft_link_info
* to decode file_info */

#define
typedat

SOFT_LINK VERSION 1

struct {

inti8 sott_link_info_version;
int1é soft_link_info_length;
int64 creation_time;

int32 target_dir;

Ant32 target version;

char target_name[variable];

} soft_link_info;

#define
typedet

SITE.INFQO_VERSION 1

struct {

int18 site_info_version;
intl8 site_info_length;
char opsys(16];

WOFS

¢har cpsys_version[16];
char gsite_name[variable];
} site_into;

#define PROPERTY LIST _VERSION 1
typedef struct {
int32 property.list_version;
int16 property_list_length;

intlé property.list_entries;
} propervy_list_info;

typedef struct {
inti8 property. name. len;
int1€ property.value_len;
¢har property.name[variable];
char property_value(variable 1;
} property_list_record;

A.7 Fragmented files fllemap

#dofine STRIP_INFO_VERSION 1
typede! atruct {
int32 strip.info_version;
int32 strip_info_langth:

int32 strip_count;
} strip.infe;

typedef atruct {
cdblock loc;
int32 valid_chars;
int32 ordinal;

} fragmented_des;

A.8 Directory Format

#define DIRECTORY_INFO_VERSION_ 1
typedef struct {
inta2 directery._info_version;
int32 Qirectory.info_length;

int32 directory.entries;
int32 directory_entry _size;
} directory_info;

#define MAX_COMP_LEN 48
typedef struct {

Simson L. Garfinkel page 14

char file_name{ MAX_COMP_LEN J:
cdblock header location;
inté4 modify_time;
int32 file_number;
int32 tile_size;
int32 file veraion;
intié file_type:
intt8 haadar_sizas;
intlé addname_count;
int18 pad;

} dir_contents;

B WOFS Specification

R.1 Time and wblock structures

typedef struct {
u.long high;
u.long low;
} inté4;

typedef int64 wtime;

typedef struct {
u.long block;
u.short offsat;
u.short pad;

} wblock:

B.2 File System Block

#define FS_BLOCK_FLAG "\237\200\005\000"

#define FS_EOT_TYPE 1
#define FS_DL_TYPE 2
#define FS_FH_TYPE 3
#dafine FS_.DIR_.TYPE 4

#define FS_HEADER_SIZE (4 + sizeof (wblock)
+ 2 % gizeof(u_short))

#define FS_DATA_SIZE \
BLOCK.,SIZE - F5_HEADER SIZE

typedef struct {

WOFS

char
wblock
u_short
u_ short
char

} f£s_block;

Siwson L. Garfinkel page 15
flagl4]; B.5 Directory List
loc; /* galf x/
type;

chain_count;
data[FS_DATA_SIZE J;

#define DIR_LIST_VERSION 3
#dufine MAX_COMP_SIZE 80

typedaf struct {

B.3 Flags and other definitions

#define EOT_FLAG
#define DL_FLAG
#define DI_FLAG
#define FH_FLAG

B W N -

u_long Zflag;
u_short dir_list_version:
u.short dir_list_header_length;

wblock prev.dir_list_header;

u_long dir,list_entry_count;

} dir_list_info; /* array follows */

typedef struct {

B.4 End of Transaction

#datine EOT_.VERS

typadaf atruct {
u_leng
u_short
u_short

wblock
u.long
u_long

wtime

u.long
wtime
wtime

u_long
w.long
u_long

char
chay
char

[F5.DATA_SIZE-128];

} eot_format ;

ION 2
flag:
aot, version:

@ot_length;

current_dir_list;

u.long dir. number;
wblock header_loc;
u.long containing dir;
wtime modify_time;
int64 contained.bytes;
u.short header_size;
u.short pad;

char name [MAX_COMP_SIZE];
¥} dir_list_element;

prev_esot_loc; B.6 Directory format

next_eot_loc;

filesystem_creation_time; /%
* A dir is a normal file in which
trans, number; * the contents consist of a
trans_start_tima; # dir_info header followed by a an
trans.end_ time; * array of dir_contents. The
* length stored in the file_info
files_written_on_trans; * structure of the file_header is
dirs Written_on.trans; * aqual to sizeof(dir_info) +
next.free.file number; » dir entries * dir_entry.size;
x/
valume_name[32] ;
encryption_standard[32];
owners_name #define DIR_INFO_VERSION 2

typedef struct {

u.long flag;
u.long dir_info_version;

WOFS

u.long dir_info_length;

u.long dir_ entries;

u_long dir_entry_size;
} dir_infe;

#dafine ROOT.DIR 1

typedef struct {

chax file _name [MAX COMP _SIZE];
wblock header_loc;

wtime modify.time;

u.leng Tile_number;

u_leng file_length;

u.short file_type;

u.short header slze;

u_short addname_count;

u.shoxrt pad;

} dir.contents;
B.7 File Headers

/* Define file types */
#define NOTHING_TYPE 0
#define FILE_TYPE 1
#detine DIR.TYPE 2
#define LINK_TYPE 3

#define HEADER_VERSION 2
typedef struct o
u.long flag;
u,.short header_ version;
u_short header_length;

u.long
u.short

file_numbar;
file_type;

u.short
u.short

access_ info_offset;
access_info_length;
u_short backup.info_offset;
u_short backup_info_length:
u.short file_info_offset;
u, short file_ info_length;

Simson L. Garfinkel page

u._short site.info_offset;
u_short site_1lnrs_length;
u.short property.info.offset;
u_short property_info_length;

} fileheader;

#dofine UNIX_ACCESS_INFO_VERSION 1
#define NAME_LEN 32

typedef struct {
u.long access_info_version;

© char file.owner[NAME.LEN J;
char file.groupl NAME_LEN];
u_short unix.access;

} access_info

/* backup info defines */
#define BACKUP_INFO_VERSION 2
typadef atruct {
u,long backup_info_version;
u.long containing.dir_number;
wblock prev_version_loc;
u.long prav.eot_loc;
u.short prev.version_ header.,size;
char filename (MAX COMP_SIZE];
} backup_info;

#define CONTIG.FILE_INFO_VERSION 1
#define FRAG _FILE_INFO_VERSION 2

typedef struct {
u.long file_info_ version;

wblock
u,long
wtime
wtime
u_long
} tile_info ;
typdef file_info frag.file_info;

contents;
byta.count;
write_time;
creation_time;

file _version_number;

/* In a fragmented file:

* contents -~ lo¢ of frag des array.
* byte.count =~ size of the array.

*/

16

WOFS

typedef struct {
wblock loc;
u,.long valid.chars;
u_long ordinal;

} frag des;

#define LOG,FILE_INFO_VERSION 3
typedef struct {
u_.long file_info _vermion;

wblock entry;
u_long entry_bytes;
wtime entry.time;

wblock prev, header;
u.leng total_bytes;
wtime creation_time;
} log_file_info:

/* If file_header is a soft link,
* use soft_link_info,
* to decode the file_info %/

/* As denoted in symbolic links */
#define DOWN_DIR_CHAR 0376
#dafina UP_DIR_CHAR 0376

#define SOQFT_LINK_VERSION 3
typadef struct {

u_long soft link_info_version;
inté4
u.long

creation, time;
target dir;
u.long target.version;
char target_name[256 1;
} soft_link.info ;

#define FIRM_LINK_VERSION 4
typedef struct {
u.long firm link_info_version;

int6d4 creation_time;

u.long target_dir;

u.long Target_versiocn;

u_long target_filenumber;
} firm.link_info ;

Simson L. Garfinkel page

#define SITE_INFO_VERSION 1
typedef struct {

u_long site_info_version;

char opeys[16 1;
char opsys.v[16];
char site_namel 64];

} site_info ;

#defina PROPERTY._LIST_VERSION 1

typedef struct {
u_long property list_veraion;
u_long property_list_ length;
u long property.list_.entries;
} proparty_list_info;

#define variable 1

typedef struct {
u.short property_name_len;
u_short property.value.len;
ehar
¢har

} property.list_racord;

L7

proparty_name[variable];
property_value[variable };

