
32 T E C H N O L O G Y R E V I E W S e p t e m b e r 2 0 0 3

S I M S O N G A R F I N K E L
THE NET EFFECT

w w w. t e c h n o l o g y r e v i e w. c o m

Y
ou use Windows, I use a Mac, and we both know

people who use GNU/Linux. But for all the differ-

ences between these three families of computer oper-

ating systems, they implement the same fundamental

design; all are equally powerful, and equally limiting.

Virtually every operating system in use today is based on a

single computer system architecture developed in the 1960s and

’70s. This architecture divides code running on computers into

a “kernel,” responsible for controlling the computer’s hardware,

and so-called application programs, which are loaded into the

computer’s memory to perform individual tasks. Applications,

in turn, operate on named files arranged in a tree of folders.

True, there are a few niche operating systems that don’t adhere

to this tripartite structure, but they are but bit players on the

digital stage. Even PalmOS has a kernel, apps, and files (which

PalmOS mistakenly calls “databases”). It’s almost inconceivable

that this approach won’t be the dominant paradigm for many

years to come. And that’s a deep problem for

the future of computing.

Hollywood, though, has a better idea.

When computers show up in good science

fiction movies, they rarely have interfaces

with windows, icons, applications, and files.

Instead, Hollywood’s systems let people

rapidly navigate through a sea of information

and quickly address their needs. Some technical folks scoff at

this representation as unrealistic. But why is that so?

Computing’s standard model owes its success to the eco-

nomics of the computer industry. The first computer programs

were monolithic systems that talked to the hardware, communi-

cated with users, and got the job done. But soon it became clear

that organizations were spending far more money on software,

custom software development, and training then they would

ever spend on hardware alone. These businesses wanted guar-

antees that the programs they were creating would run on next

year’s computer. The only way to assure this was to take all of

the hardware-specific code and put it into some kind of “super-

visor” program—what we now call the kernel. The supervisor

evolved into a kind of traffic cop that could allow multiple pro-

grams to run on the same computer at the same time without

interfering with one another. That was vital back in the day

when a single computer might have dozens of simultaneous

users. It’s equally important today for people who run dozens of

programs simultaneously on their desktop systems.

But you could imagine building computers differently.

Movie directors have pointed the way, showing interfaces that

appear to make all of the computer’s data and power always

instantly available. Achieving such flexibility, however, would

require us to rethink operating-system dogma. For example,

instead of isolating applications from each other—where trans-

ferring data between them requires cutting, pasting, and usually

reformatting—a hypothetical computer might run all programs

at the same time and in the same workspace. Programs might

not display information in their own distinct windows, the way

they do now; instead, they would work behind the scenes, con-

tributing as needed to a common display.

Most people can’t imagine how such a system would work.

The idea of editing an Adobe Illustrator document with

Microsoft Word seems nonsensical: one program is designed

for drawings, the other for words—and besides, they’re made

by different companies! Yet many Illustrator documents contain

blocks of text: why not use Word’s superior text-editing capa-

bilities? In our imagined new computer, the boundaries

between applications would melt away.

Computer scientists periodically experiment with systems

that do away with the software barriers on which today’s com-

puters are based, but these systems are rarely successful in the

marketplace. Both the Lisp Machine and the Canon Cat

encouraged developers to create programs that ran in the same

workspace, rather than dividing the computer up into different

applications. The Apple Newton stored information not in files

but in “soups”—little object-oriented databases that could be

accessed by many different programs, even at the same time.

The commercial failure of these systems does not vindicate

today’s way of computing but rather is testimony to just how

dangerous the dominant-paradigm trap actually is.

Consider files and directories. The hierarchical directory

system used by Windows, MacOS, and Unix made sense to

computer pioneers who grew up using paper and filing cabi-

nets. But why limit today’s computers with 40-year-old

metaphors? Computers have fantastic search capabilities. Some

documents logically belong in multiple places; why not elimi-

nate the folders and store all of the computer’s information in

one massive data warehouse? That’s the way computers in the

movies seem to work.

It’s not such a far-fetched notion. It wouldn’t take much to

enable today’s computers to store every version of every docu-

ment they have ever been used to modify: most people perform

fewer than a million keystrokes and mouse clicks each day; a

paltry four gigabytes could hold a decade’s worth of typing and

revisions if we stored those keystrokes directly, rather than

using the inefficient Microsoft Word document format. Alas,

the convenient abstractions of directories and files make it diffi-

cult for designers to create something different.With a little

thought, though, we could do far better. Hollywood has

dreamed it; now Silicon Valley needs to make it real. ◊

KILL THE OPERATING SYSTEM!

For all their apparent differences, the
three great families of computer operat-
ing systems—Windows, MacOS, and
GNU/Linux—are all equally limiting. But
Hollywood has a better idea.

